A Finite Element Computer Model of the Captive Column

Craig P. Kipp

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation
 Kipp, Craig P., "A Finite Element Computer Model of the Captive Column" (1981). Theses and Dissertations. 3783.

https://commons.und.edu/theses/3783

This Graduate Project is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

A FINITE ELEMENT COMPUTER MODEL
 OF THE CAPTIVE COLUMN

By
Craig P. Kipp
Bachelor of Science, Mechanical Engineering
University of North Dakota, 1978

A Project Report
Submitted to the Faculty of the School of Engineering and Mines of the
University of North Dakota
in partial fulfillment of the requirements
for the degree of
Master of Engineering

Grand Forks, North Dakota
December
1981

This Project Report submitted by Craig P. Kipp in partial fulfillment of the requirements for the Degree of Master of Engineering from the University of North Dakota is hereby approved by the Faculty Advisor and the Department Chairman under whom the work has been done.

$\frac{\text { Oct } 21,1981}{\text { Date }}$

$\frac{10-21-81}{\text { Date }}$

PERMISSION

Title A FINITE ELEMENT COMPUTER MODEL OF THE CAPTIVE COLUMN

Department Mechanical Engineering

Degree Master of Engineering

In presenting this project report in partial fulfillment of the requirements for a Master's degree from the University of North Dakota, I agree that the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly pourposes may be granted by the professor who supervised my project report work or, in his absence, by the Chairman of the Department or the Dean of the Graduate School. It is understood that any copying or publication or other use of this project report or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.

TABLE OF CONTENTS

TABLE OF CONTENTS, Cont.
PAGE
CHAPTER 5 - EXPERIMENTAL APPARATUS AND PROCEDURES 45
Deflection Measurement 45
Strain Measurement 45
CHAPTER 6 - RESULTS 58
Deflection Comparisons 58
Core Stress Comparisons 66
Axial Cap Forces 73
Wrap Elements 79
Wrap Pretension 84
Captive Columns Tested to Failure 86
CHAPTER 7 - CONCLUSION 92
Discussion 93
APPENDICES 96
APPENDIX A - Computer Control Card Designating System 97
APPENDIX B - Experimental Data 99
APPENDIX C - Triangular Cross Section Finite Element Computer Program 120
APPENDIC D - Square Cross Section Finite Element Computer Program 137
APPENDIX E - Sample Output From Finite Element Computer Program 161
APPENDIX F - Computer Program: Experimental Stress From Experimental Strain 167
REFERENCES 171
LIST OF FIGURES
FIGURE NO.
PAGE
1 TRIANGULAR CAPTIVE COLUMN CORE 10
2 CAPTIVE COLUMN CAPS 11
3
CAPTIVE COLUMN WRAP 12
4 CAPTIVE COLUMN GEOMETRIES 18
5678TEST CONFIGURATION FOR LOAD-DEFLECTION AND LOAD-STRAINMEASUREMENTS47
18
STRAIN ROSETTE ORIENTATION ON THE SQUARE CROSS SECTION CAPTIVE COLUMN 4919
THE EIGHT STRAIN ROSETTE LOCATIONS ON THE SQUARE CROSS SECTION CAPTIVE COLUMN 50
20 THE TWO PLANES OF STRAIN SYMMETRY FOR THE SQUARE CROSS SECTION CAPTIVE COLUMN 52

> LIST OF FIGURES, Cont.
FIGURE NO. PAGE
21 THE FOUR AVERAGED STRAIN LOCATIONS 53
22 TWO TYPES OF BENDING OUT OF THE PLANE OF THE CORE RIBS 55
23
REARRANGEMENT OF LOCATION II AND III BECAUSE OF SYMMETRY 56
24
PRINCIPAL CORE STRESSES FOR A 3/16 INCH ACRYLIC CORE CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER STEEL CAPS 67
25
PRINCIPAL CORE STRESSES FOR A 3/16 INCH ACRYLIC CORE CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER FIBERGLASS CAPS 68
262728293037 OBSERVED MODE OF FAILURE FOR CAPTIVE COLUMNS LOADEDPAST THEIR ULTIMATE STRENGTH91
FIGURE NO. PAGE
38
LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 9 DATA 101
39
LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 10 DATA 103
40
LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 11 DATA 105
41
LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 12 DATA 107
42 LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 13 DATA 109
43
LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 14 DATA 111
44 LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 15 DATA 113
45 LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 16 DATA 115

TABLE NO.

PAGE
$\begin{array}{ll}1 & \text { STIFFNESS TO WEIGHT COMPARISON OF THE CAPTIVE COLUMN } \\ & \text { WITH STANDARD STRUCTURAL MEMBERS } 5\end{array}$
2 COMPONENTS AND CONFIGURATIONS OF THE TEN CAPTIVE COLUMNS BUILT FOR TESTING 17

3 SIZES AND MOMENTS OF INERTIA OF THE CAPTIVE COLUMNS BUILT FOR TESTING24

4 ELEMENT TYPES AND PROPERTIES USED IN THE COMPUTER MODEL35

5 THE SLOPES OF THE DEFLECTION VERSUS LOAD CURVES FOR THE TOP CAP(S) OF A 28 INCH LONG CAPTIVE COLUMN LOADED AT THE MIDSPAN 59

6 PERCENT DIFFERENCES BETWEEN THE THREE SLOPE CASES OF TABLE 561
7 MAXIMUM AXIAL CAP FORCES FOR A 100 POUND MIDSPAN LOAD 74
8 THE NUMBER OF COMPUTER WRAP ELEMENTS REMAINING IN TENSION FOR A 100 POUND MIDSPAN LOAD 82

9 LOAD-DEFLECTION DATA FOR A TRIANGULAR CROSS SECTION CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER STEEL CAPS: $3 / 16$ INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 DENSITY KEVLAR WRAP, AND A PINE CENTERPIECE 100

10 LOAD-DEFLECTION DATA FOR A TRIANGULAR CROSS SECTION CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER FIBERGLASS CAPS; 3/16 INCH BALSA WOOD CORE; 45º, . 0078 INCH DIAMETER, 20 DENSITY KEVLAR WRAP, AND A PINE CENTERPIECE 102

11 LOAD-DEFLECTION DATA FOR A TRIANGULAR CROSS SECTION CAPTIVE COLUMN WITH $1 / 4$ INCH DIAMETER STEEL CAPS; $3 / 16$ INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 DENSITY KEVLAR WRAP, AND A PINE CENTERPIECE 104

12 LOAD-DEFLECTION DATA FOR A TRIANGULAR CROSS SECTION CAPTIVE COLUMN WITH $1 / 4$ INCH DIAMETER FIBERGLASS CAPS; 3/16 INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 DENSITY KEVLAR WRAP, AND A PINE CENTERPIECE 106

LIST OF TABLES, Cont.

TABLE NO.

 PAGE13 LOAD-DEFLECTION DATA FOR A SQUARE CROSS SECTION CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER STEEL CAPS; 3/16 INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 DENSITY KEVLAR WRAP AND A PINE CENTERPIECE108

14 LOAD-DEFLECTION DATA FOR A SQUARE CROSS SECTION CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER FIBERGLASS CAPS; 3/16 INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 density keviar wrap and a pine centerpiece .110

15 LOAD-DEFLECTION DATA FOR A SQUARE CROSS SECTION CAPTIVE COLUMN WITH 1/4 INCH DIAMETER STEEL CAPS; 3/16 INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 DENSITY kEVLAR WRAP AND A PINE CENTERPIECE112

16 LOAD-DEFLECTION DATA FOR A SQUARE CROSS SECTION CAPTIVE COLUMN WITH $1 / 4$ INCH DIAMETER FIBERGLASS CAPS; 3/16 INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 DENSITY KEVLAR WRAP AND A PINE CENTERPIECE114

17 LOAD-STRAIN DATA FOR A SQUARE CROSS SECTION CAPTIVE
COLUMN WITH $1 / 8$ INCH DIAMETER STEEL CAPS; $3 / 16$ INCH
ACRYLIC CORE; AND 450, . 0078 INCH DIAMETER, 20 DENSITY
KEVLAR WRAP 116

18 LOAD-STRAIN DATA FOR A SQUARE CROSS SECTION CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER FIBERGLASS CAPS; 3/16 INCH ACRYLIC CORE; AND 450, . 0078 INCH DIAMETER, 20 density keviar wrap 118

The author extends his gratitude to his advisor, Dr. J. Peter Sadler, for his guidance and support throughout this project; to Dr. Ronald Apanian and Albert Anuta for reviewing the report; to the North Dakota State Highway Department for their financial support; and to the Engineering Experiment Station for clerical and drafting support. Thanks are also extended to Michael Gilberg, Steve Apanian, and David O'Shea for their work on captive column fabrication and testing. Credit for the conceptual design of the captive column described in this paper is given to Mr . Lawrence Bosch, inventor and captive column patent holder.

ABSTRACT

This report describes the computerized mathematical modeling of a composite structural assemblage referred to as a "captive column". The captive column is a potentially useful structural member (beam, column, or torsion member) which exhibits a high strength-to-weight ratio. The captive column consists of three basic components: a lightweight core section, the principal load bearing elements referred to as caps, and a filamentous wrap, helically wound around the other two members. Together the three elements act as an integral unit and can be constructed in multigeometrical cross sections and diverse lengths.

A linearly elastic finite element computer model was developed to analyze the structural behavior of captive columns under static bending loads. On this model the captive column core ribs were represented by a combination of orthotropic plane stress elements and beam elements. Beam elements were also utilized for modeling the caps, while truss elements represented the wrap strands. Typical computer model sizes of the columns included 60 nodes and 213 elements for the triangular cross section and 105 nodes and 404 elements for the square cross section.

A total of ten experimental test specimens, all 28 inches long, were constructed for the purpose of verifying the computer model. The specimens were loaded as simply supported beams while the applied load, deflections under the load, and core strain 3.5 inches on either side of the load were recorded. These experimental results were then compared with the computer model results. These results are as follows.

The computer model deflections at the midspan of the column, under a concentrated load, were 10 to 12 percent less than the actual experimentally measured deflections. Furthermore, for the captive columns with steel caps, the computer model core stresses, at a point 3.5 inches on either side of the midspan load, differ by no more than 20 percent from the experimentally measured core stresses. For the captive columns with fiberglass caps, the computer model cores stresses differ by 95 percent and 74 percent for the algebraically smallest principal stress and less than 8 percent for the other, larger, principal stress. Principal directions of the two dimensional stress element differed by no more than 11 percent for the steel capped captive column and from 2 to 28 percent for the fiberglass capped captive column.

In conclusion, initial verification has been obtained for a finite element model of the captive column structural composite. Additionally, preliminary design procedures have been outlined for specifying the cap, wrap, and core of the captive column for specific loading applications.

NOMENCLATURE

$$
\begin{aligned}
& A_{c}=\text { Cross sectional area of one captive column cap (in }{ }^{2} \text {) } \\
& A_{c r}=\text { Cross sectional area of one rib of the captive column core (in }{ }^{2} \text {) } \\
& B E_{c a p}=\text { Modulus of elasticity of the cap beam elements (psi) } \\
& B E_{\text {core }}=\text { Modulus of elasticity of the core beam elements (psi) } \\
& \text { D = Horizontal distance between caps (in) } \\
& E_{n}=\text { Modulus of elasticity in the } n \text { direction of the core. Direction } \\
& \text { parallel to the caps (psi) } \\
& \mathrm{E}_{\mathrm{s}}=\text { Modulus of elasticity in the s direction of the core. Direction } \\
& \text { radially outward from the center of core, perpendicular to } \\
& \text { caps (psi) } \\
& \mathrm{E}_{\mathrm{T}}=\text { Modulus of elasticity in the } \mathrm{T} \text { direction of the core. The thick- } \\
& \text { ness direction (psi) } \\
& (E I)_{e q}=\text { The calculated EI equivalent of the core and cap }\left(i n^{4}\right) \\
& (E I)_{\text {eq }}=E_{\text {cap }} I_{\text {cap }}+E_{\text {core }} I_{\text {core }} \\
& F=\text { Load applied to the captive column (1b) } \\
& F_{c}=\text { Force in the caps (1b) } \\
& G_{n s}=\text { Modulus of rigidity (of the core) in the } \eta-s \text { direction (psi) } \\
& h=\text { Length of one rib in the core (in) } \\
& I_{c}=\text { Moment of inertia of one cap about its centrodial axis (in }{ }^{4} \text {) } \\
& I_{\text {cap }}=\text { Moment of inertia of all the caps on a captive column with } \\
& \text { respect to the column's centrodial axis (in }{ }^{4} \text {) } \\
& \begin{aligned}
I_{\text {core }}= & \text { Moment of inertia of the entire core with respect to the column's } \\
& \text { centrodial axis (in }
\end{aligned} \\
& I_{x}=\underset{x \text {-direction }\left(i n^{4}\right)}{ } \quad \begin{array}{l}
\text { Moment of }
\end{array} \\
& I^{\prime} x^{=}=\begin{array}{l}
\text { Moment of inertia of two ribs, about the } x \text { centrodial axis of } \\
\text { the column (in4) }
\end{array} \\
& I_{y}=\underset{y-d i r e c t i o n ~}{\text { Moment }} \text { in } n^{4} \text {) of one rib, about its centrodial axis in the }
\end{aligned}
$$

$L=$ Length of the captive column (in)
$\begin{aligned} & \mathrm{L}_{1}= \text { The distance squared from the column's centrodial axis to the } \\ & \text { center of the farthest cap for the triangular cross section (in }{ }^{2} \text {) }\end{aligned}$
$L_{2}=$ The distance squared from the column's centrodial axis to the center of either of the two closer caps for the triangular cross section (in ${ }^{2}$)
$L_{3}=$ The distance squared from the column's centrodial axis to either of the four caps for the square cross section (in ${ }^{2}$)
$L_{4}=$ The distance squared from the column's centrodial axis to the centrodial axis of one of the four ribs in the square cross section (in ${ }^{4}$)
$M=$ Moment
$N=$ Number of caps above the neutral axis
PSE ${ }_{\text {core }}=$ Modulus of elasticity of the plane stress core elements (psi)
$r=$ Radius of the cap (in)
$T E_{\text {wrap }}=$ Modulus of elasticity of the truss wrap element (psi)
$W=$ Width of the core ribs (in)
$\delta=$ Deflection of the top cap or caps at the midspan of the captive column (in)
$\varepsilon_{\mathrm{p}}=$ Maximum principal $\operatorname{strain}\left(\frac{i n}{i n}\right)$
$\varepsilon_{\mathrm{q}}=$ Minimum principal strain $\left(\frac{i n}{i n}\right)$
$\varepsilon_{1}=$ Strain from strain gauge one of the strain rosette $\left(\frac{i n}{i n}\right)$
$\varepsilon_{2}=$ Strain from strain gauge two of the strain rosette $\left(\frac{i n}{i n}\right)$
$\varepsilon_{3}=$ Strain from strain gauge three of the strain rosette $\left(\frac{i n}{i n}\right)$
$\nu=$ Poisson's ratio
$\nu_{n s}=$ Poisson's ratio in the $n-s$ direction of the core
$\nu_{n T}=$ Poisson's ratio in the $n-T$ direction of the core
$\nu_{S T}=$ Poisson's ratio in the $s-T$ direction of the core
$\sigma_{p}=$ Maximum principal stress (psi)
$\sigma_{q}=$ Minimum principal stress (psi)
$\phi=$ Orientation of the axis of the maximum normal stress, measured from strain gauge one in the direction of strain gauge three

CHAPTER 1

INTRODUCTION

The Captive Column is a high strength, lightweight structural composite made up of three components; namely, a lightweight core section, the principal load bearing elements referred to as caps, and a filamentous wrap, helically wound around the other two members. Together, the three elements act as an integral unit and can be constructed in multi-geometrical cross sections and diverse lengths. Materials such as fiberglass, steel, and wire rope are used for the caps; balsa wood, aluminum, and plexiglass for the core, Kevlar (a Dupont product), other synthetic fibers and metallic strands for the wrap. (A detailed description of the captive column is presented in Chapter 2).

Potential applications of the captive column include transmission towers, bridges, pilings, light poles, and essentially any application where a typical structural column or beam is used [1]. The alluring feature of the captive column stems from its high strength (or stiffness) to weight ratio. However, such additional assets as portability, a wide selection of materials, and the potential for local production contribute to the overall optimism surrounding the captive column's marketability.

Exhibited in Table 1 is the advantageous stiffness to weight characteristic of the captive column. By selecting beams with the same flexural rigidity (modulus of elasticity times moment of inertia), or nearly the same, as that which was experimentally determined for a 5.875 inch square cross section captive column, a weight comparison, for beams exhibiting

TABLE 1

STIFFNESS TO WEIGHT COMPARISON OF THE CAPTIVE COLUMN

 WITH STANDARD STRUCTURAL MEMBERS| Beam | Size
 (In) | $\left(10^{6} \stackrel{\mathrm{E}}{\left.\mathrm{Lb} / \mathrm{In}^{2}\right)}\right.$ | $\stackrel{\mathrm{I}}{\left(\mathrm{In}^{4}\right)}$ | $\left(10^{6} \mathrm{E} \cdot \mathrm{I}\right. \text { 列-In2) }$ | Weight
 (Lb/Ft) | Weight Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Captive Column: | | | | | | |
| 3/8" Fiberglass Caps | 5.875" Square | | | 17.1 | . 73 | + 1.0 |
| 3/8" Balsa Core | 9' Long | | | | | |
| 60° Wrap | - | | | | | |
| I-Beams: | 5.875" | | | | | |
| A) Glass Reinforced Polyester [2] | $4^{\prime \prime} \times 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ | 2.3 | 7.94 | 18.2 | 2.12 | + 2.9 |
| B) Aluminum | $3^{\prime \prime} \times 1-1 / 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ | 10.3 | 1.75 | 18.0 | 1.66 | + 2.27 |
| C) Structural Steel | $2^{\prime \prime} \times 2^{\prime \prime} \times 1 / 8^{\prime \prime}$ | 30.0 | . 496 | 14.8 | 2.25 | + 3.5 |
| Channels: | | | | | | |
| A) Glass Reinforced Polyester [2] | $5^{\prime \prime} \times 1-3 / 8^{\prime \prime} \times 1 / 4^{\prime \prime}$ | 2.3 | 5.78 | 13.2 | 1.32 | + 1.8 |
| B) Aluminum | $4^{\prime \prime} \times 1-1 / 16^{\prime \prime} \times 1 / 8^{\prime \prime}$ | 10.3 | 1.55 | 15.9 | . 84 | + 1.15 |
| C) Structural Steel | $3^{\prime \prime} \times 13 / 16^{\prime \prime} \times 1 / 8^{\prime \prime}$ | 30.0 | . 637 | 19.0 | 1.79 | + 2.45 |

The flexural rigidity of the captive column was determined experimentally ($E I=\frac{F L^{3}}{48 \delta}$), while the flexural rigidity of the I-Beams and channels were taken from reference [2]
similar midspan deflections, can be made. Notice that the captive column is typically two to three times lighter than comparable structural beams of equal stiffness.

Unlike typical structural members (steel beams, trusses, and reinforced concrete), design information for the captive column is, unfortunately, nonexistent. Established beam theory, although potentially applicable, has not been verified, modified, or in any way related to the captive column [3]. Additionally, analysis of the captive column is complicated by: 1) the uncertainty surrounding the interrelationships of the three elements -- cap, core, and wrap, and 2) the large number of construction variables intrinsic in the concept. These variables include the angle of wrap, each elements size and material, column geometry, adhesives, loading patterns, and, of course, construction techniques. Understandably, this void between a potentially useful product and adequate design information creates a wide chasm between the captive column portent and a latent commercial market.

These multifarious design variables suggest the use of modern computer based techniques to analyze the captive column. Therefore, the objective of this research effort, as described in this paper, is to develop a finite element computer model, applicable to the captive column which, eventually, can be used for the analysis of existing captive column designs and for the determination of possible new improved designs.

Specifically, three long range objectives were defined for the computer based analytical development:

1. Determine the validity of finite element computer techniques in predicting captive column structural performance.
2. Evaluate how material properties and geometries influence structural performance.
3. Use the computer program for design optimization.

This report concentrates on the first objective; where load deflection and core stress comparisons between the computer model and the experimental results are highlighted.

Two finite element computer models are developed. One for a triangular cross section captive column and the other for a square cross section captive column. The models have 60 and 105 nodal points, respectively. These nodal points define the size and shape of the computer model. They are connected with specific element types that determine the characteristics of the mathematical paradigm. Thus, the model mathematically represents the actual physical column in terms of geometry, element size, and material properties.

In addition to the finite element computer mode1, a laboratory experimental program was developed and undertaken. The results from this laboratory testing, plus the computer model and theoretical beam theory deflections, are compared and analyzed. These laboratory tests clearly supported the computer model development, and assisted, through observation and experience, in refining captive column construction techniques.

It should be noted that all of the work presented here involves simply supported beams (captive columns) loaded at the midspan. These computer models do not simulate column buckling. According to the models, an axially loaded column would simply deflect according to $\delta=\mathrm{FL} / A E$. Typically, in the case of the captive column, the caps, with a much larger AE value, are the components which govern in tension and compression. Therefore, further analytical development must be done before captive columns, loaded as columns, can be modeled in buckling.

The remainder of this report deals with the development of the captive column finite element computer model; and the procedure for laboratory testing of the captive columns, as well as the data acquired from these tests. Chapter 6, Results, compares deflections and stresses obtained from the computer model, the laboratory tests, and classical beam theory calculations. Chapter 7 deals with the conclusions gained from this research and also recommendations for improvements in the computer model.

CHAPTER 2

THE CAPTIVE COLUMN

In this chapter the captive column concept is described, briefly presenting the principles involved, while also detailing the specific captive column members; the cap, core, and wrap.

One of the simplest captive column geometry is the triangular cross section shown in Figures 1 through 3, an equilateral triangle with a high strength cap at the apex of each angle. The caps are held in position by an internal core which prevents inward buckling. To prevent outward and lateral buckling of the caps, the entire column is wrapped by a tensiononly filament. Thus, the captive column concept comprises at least three caps, fully constrained, preventing movement relative to each other; hence, the name "captive column".

Captive Column Concept

The basic principles behind the captive column are, naturally, the same as those behind any other beam or column. Increases in either the moment of inertia or the modulus of elasticity increase the load carrying capacity of a column or beam, both in axial compression and bending. The more material placed at greater distances from the neutral axis, the larger the moment of inertia. A well known example of this concept is the structural I-beam. Thus, in the case of the captive column, by placing a relatively high modulus of elasticity material (caps) as far away as possible from the neutral axis, without sacrificing structural integrity, the load carrying capacity of the captive column is increased. The column's weight per lineal foot can then be minimized by selecting

FIGURE 1 - TRIANGULAR CAPTIVE COLUMN CORE

FIGURE 2 - CAPTIVE COLUMN CAPS

lightweight materials, with specific applicable properties, for the core and wrap.

Further, the inventor of the captive column concept, Mr. Lawrence Bosch, believes that the core experiences only compressive forces, no moments, and that the rigidity of the structure is determined by the compressive strength of the core, as well as the tensile strength of the filament windings. Also, shear forces and torsional forces which may act upon a column are resolved into tensile and compressive forces in the structure [4].

Obviously, to utilize the maximum strength capabilities of each component in such a concept, while also maintaining structural rigidity at a low overall weight, it is necessary to identify, and design, for the loads placed upon each component. These loads change for each specific geometry, loading condition, and material combination, thereby providing the impetus for this research effort.

Core
The core members provide continuous support for the cap elements, thereby preventing inward buckling. At the outer edge of each rib, the caps are secured by the appropriate adhesive. The ribs of the core are also joined by an adhesive where they meet, typically at the centrodial axis of the column. Balsa wood has been the primary core material. Since the core is to restrict inward deflection of the caps, the grain of the balsa wood is oriented perpendicular to these caps, utilizing the largest modulus of elasticity of anisotropic balsa wood. Douglas fir, fiberglass, and other plastics are possible alternative core materials (see Figure 1).

Caps

Each cap, thought to be the primary load carrying element, extends without interruption through the entire length of the column. They are prevented from buckling by the wrap and core elements. Normally, they are high ultimate strength unidirectional fiberous rods. Any geometry or material for the cap is possible with $1 / 8^{\prime \prime}$ to $1 / 2^{\prime \prime}$ circular rods being the most common shapes to date (see Figure 2).

Wrap

The third basic captive column element is the tension wrap or filament winding. This filament is oriented in a spiral fashion with one-half of the filament spiraling in one direction along the column and the other half spiraling in the opposite direction along the structure. Each filament of the wrap is joined, where it passes over a cap, by an appropriate adhesive. Various degrees of pitch may be employed on the wrap, with 30° to 60° being the most common. The helical wrap may be formed from a variety of high tension materials such as Dupont Kevlar, other synthetic fibers, or various metallic wires (see Figure 3).

The wrap is placed on the column with some tension, called pretension, typically in the one to three pound range. When the column is not under a load all wrap fibers are in tension. However, since compressive axial forces cannot be transmitted by the wrap, numerous fibers do relax when the column is loaded.

Columns Constructed for Testing

The ten captive columns twenty-eight inches long built for experimental testing incorporated either the fiberous epoxy resin fiberglass rods (E of $6 \times 10^{6} \mathrm{psi}$) or the carbon steel rods (E of $30 \times 10^{6} \mathrm{psi}$). The two different cap materials were never combined. That is, all the caps on any
one column were either fiberglass or steel. Thus, five columns had fiberglass caps while the other five had steel caps. Cap diameters were $1 / 8$ and $1 / 4$ inches. The caps were joined to the core, along their entire length, by Minnesota Mining and Manufacturing (3M) structural adhesive \#1838 B/A.

Eight of the columns had $3 / 16$ inch thick balsa wood cores while the other two columns had $3 / 16$ inch acrylic cores. The material properties of the cores are presented in Table 4. The balsa wood ribs were joined to a pine centerpiece, at the neutral axis, by Elmer's wood glue. The grain of the balsa wood extended radially outward from the core center, so that it was perpendicular to the caps. The ribs of the acrylic core were also joined at the neutral axis by the adhesive K-Lux Solvent Cement. However, because of the isotropic properties of acrylic plastic, a different centerpiece was not required. Dupont Kevlar was the only wrap material used. It was 0.0078 inches in diameter and had a modulus of elasticity of 18×10^{6} psi. The wrap angle was 45° in all cases and the wrap density was 20.

Hence, two different captive column cross sections, each utilizing fiberglass and steel caps, were built, tested, and modelled. Note that the two different cross sections are sized so that the moment of inertia of the caps, about the centrodial axis of the column, are equal. That is, the moment of inertia of three $1 / 8$ inch caps on the triangular cross section is equal to the moment of inertia of four $1 / 8$ inch caps on the square cross section. The same is true, approximately, less than two percent error, for the columns constructed with $1 / 4$ inch caps. Observe that the core and wrap are completely neglected in this calculation. Also, the two acrylic core columns were fabricated only in the square cross section.

Shown in Table 2 are the sizes and materials of the caps used on the respective cores. The cross-sectional dimensions of the columns tested in are shown in Figure 6.

Construction

The captive column is capable of being constructed in a vast array of configurations. For clarity, a number of geometries and variations are shown in Figure 4.

Presently, with the exception of a wrapping machine, the captive columns are constructed manually. Four to five inch balsa wood core sections, with the grain running radially outward, are glued together until the desired column length is reached. A $1 / 16$ inch groove is machined on the end of each rib to facilitate gluing of the cap to the core. Precise construction is important. After the core has been constructed and the caps are properly attached the column is wrapped. The wrapping machine traverses the entire column applying the wrap at a specific angle. Trivial cross sectional distrotions, due to construction oversight, torsion along the length of the column, and unsatisfactory glues comprise some of the more important construction faults. Additionally, the core center piece should be a material which has a compressive strength, in all directions, equal to, or greater than, the compressive strength of the material used for the core ribs.

Experience indicates construction technique is as important to the structural integrity of the captive column concept as material and geometrical considerations.

TABLE 2

COMPONENTS AND CONFIGURATIONS OF THE TEN CAPTIVE COLUMNS BUILT FOR TESTING

Core Material	Cap Material (Dia)	Wrap	
$3 / 16^{\prime \prime}$ Balsa Wood	$\underline{\text { Fiberglass }}$	$\underline{\text { Steel }}$	
Square Cross Section	$1 / 8^{\prime \prime}$ and $1 / 4^{\prime \prime}$	$1 / 8^{\prime \prime}$ and $1 / 4^{\prime \prime}$	Kevlar
Triangle Cross Section	$1 / 8^{\prime \prime}$ and $1 / 4^{\prime \prime}$	$1 / 8^{\prime \prime}$ and $1 / 4^{\prime \prime}$	Kevlar
$3 / 16^{\prime \prime}$ Acrylic			
Square Cross Section	$1 / 8^{\prime \prime}$	$1 / 8^{\prime \prime}$	Kevlar

Tapered

FIGURE 4 - CAPTIVE COLUMN GEOMETRIES

CHAPTER 3

THEORETICAL GOVERNING EQUATIONS

This chapter delineates the equations employed for the theoretical calculations of captive column midspan deflections and captive column core stresses. As previously stated, these deflections and stresses are calculated so that comparisons can be made with computer and laboratory results. These calculated deflections and stresses will provide another data base around which verification and/or improvements in the computer model can be made. These comparisons are presented in Chapter 6.

For the most part, the calculations draw upon classical strength of material methods and can be explored, in much more detail, in any introductory text on the subject [5] [6]. Two variances, however, do arise. One is due to the composite nature of captive columns; in essence, a column (or beam) of two materials. The other variance is due to the anisotropic material properties of balsa wood cores; the most common core material and the material used in eight of the ten columns in this analysis. Both of these aberrations are discussed under the following subtitle.

Deflection

Classical beam theory states that a simply supported lineraly elastic beam under a concentrated midspan load will deflect according to the following formula:

$$
\begin{equation*}
\delta=\frac{\mathrm{FL}^{3}}{48 \mathrm{EI}} \tag{1}
\end{equation*}
$$

$$
\text { where: } \begin{aligned}
\delta & =\text { deflection } \\
& F=\text { applied load }
\end{aligned}
$$

$L=$ length of beam
$E=$ modulus of elasticity
$I=$ moment of inertia

Equation (1) is ideal and therefore implies many assumptions. Two of these assumptions must be reviewed in this discussion. First, the beam is assumed to be constructed of one homogenous material, and therefore, a single modulus of elasticity applies to the entire cross section and, subsequently, to the entire moment of inertia. Second, it is assumed that the modulus of elasticity used in this equation applies in the direction in which the beam will experience tension and compression during bending. For a beam made with an isotropic material, the given value of E naturally applies. However, for a beam material with two or three different values of E (anisotropic), the appropriate value must be defined. In the case of the captive column at least three different materials are used, complicating the EI calculation of Equation (1) and introducing the first variance. Thus, it is necessary to derive an equivalent EI combination, (EI) eq, for the composite captive column. Additionally, selecting the correct value of E to be used in the calculations for orthotropic balsa wood precipitates the second variance from the elementary beam deflection calculation.

The equivalent EI (flexural rigidity) developed for a captive column is shown below:

$$
\begin{equation*}
(E I)_{\text {eq }}=E_{\text {core }} I_{\text {core }}+E_{\text {cap }} I_{\text {cap }} \tag{2}
\end{equation*}
$$

This substituted into Equation (1) yields:

$$
\begin{equation*}
\delta=\frac{\mathrm{FL}^{3}}{48(E I)_{\mathrm{eq}}}=\frac{\mathrm{FL}^{3}}{48\left(\mathrm{E}_{\text {core }} \mathrm{I}_{\text {core }}+\mathrm{E}_{\text {cap }} \mathrm{I}_{\text {cap }}\right)} \tag{3}
\end{equation*}
$$

Notice that the wrap is neglected in the calculation. The wrap's moment of inertia, in comparison to the cap's and core's moment of inertia,
is so small that it has a negligible effect on the computed deflection. This is not to say, however, that the wrap does not influence the captive column rigidity; it performs the important task of maintaining the cross sectional geometry during deflection.

Shown in A and B of Figure 5 are the two captive column cross sections used in the captive columns which were modelled and tested. In order to determine different moments of inertia for the caps or core when different cap diameters or core thicknesses are used, the following formulas were developed.

Square Cross Section:

$$
\begin{gather*}
I_{\text {cap }}=4 \cdot I_{c}+2 \cdot A_{c} L_{3} \tag{4}\\
I_{\text {core }}=I_{x}^{\prime}+2 \cdot I_{x}+2 \cdot A_{c r} L_{4} \tag{5}
\end{gather*}
$$

where: $\quad I_{c}=\left(\frac{1}{4}\right) \pi r^{4}$

$$
\begin{align*}
& A_{c}=\pi r^{2} \tag{7}\\
& L_{3}=(h+r+.5 W)^{2}
\end{align*}
$$

$$
\begin{equation*}
I_{x}=\left(\frac{1}{12}\right) W h^{3} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
I_{y}=\left(\frac{1}{12}\right) h w^{3} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
I_{x}^{\prime}=\left(\frac{1}{12}\right)(2 h+W)(W)^{3} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
L_{4}=\left[\left(\frac{1}{12}\right)(W+h)\right]^{2} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
A_{c r}=W h \tag{12}
\end{equation*}
$$

Triangular Cross Section:

$$
\begin{gather*}
\mathrm{I}_{\text {cap }}=3 \mathrm{I}_{\mathrm{c}}+1.5 \mathrm{~A}_{\mathrm{c}} \mathrm{~L}_{1} \tag{14}\\
\mathrm{I}_{\text {core }}=1.5 \mathrm{I}_{x}+1.5 \mathrm{I}_{y}+1.5 \mathrm{~A}_{c r} \mathrm{~L}_{2} \tag{15}
\end{gather*}
$$

A. TRIANGULAR CROSS SECTION

FIGURE 5 - MOMENT OF INERTIA NOMENCLATURE

$$
\text { where: } \quad \begin{align*}
I_{c} & =\left(\frac{1}{4}\right) \pi r^{4} \tag{16}\\
A_{c} & =\pi r^{2} \tag{17}\\
L_{1} & =(h+r+(.289 W))^{2} \tag{18}\\
I_{x} & =\left(\frac{1}{12}\right) W h^{3} \tag{19}\\
I_{y} & =\left(\frac{1}{12}\right) h W^{3} \tag{20}\\
A_{c r} & =W \cdot h \tag{21}\\
L_{2} & =(h / 2+(.289 \cdot W))^{2} \tag{22}
\end{align*}
$$

The equations are derived from standard moment of inertia calculations and are presented here only for clarity and completeness. These computed moments of inertia are multiplied by the appropriate values of E to determine the equivalent flexural rigidity as shown in Equation (2).

The modulus of elasticity used for a balsa wood core in the deflection calculations is the value for the direction parallel to the caps; that is, the smaller E of 13,400 psi. Typically, the columns are built with the largest $\mathrm{E}(400,000 \mathrm{psi})$, in the direction perpendicular to the caps, thereby providing the greatest restraint against inward cap movement.

Table 3 lists the respective sizes and moments of inertia for the captive columns built and modelled.

Stress

Strain is measured via rectangular strain rossettes, mounted on the ribs of $3 / 16^{\prime \prime}$ plexiglass cores. The strain gauges are mounted in the center of the rib, 3.5 inches from the middle of the column (see Figure 18). These experimentally determined strains are substituted into the following equations to derive the principal stresses. These stresses are compared

TABLE 3

SIZES AND MOMENTS OF INERTIA OF THE CAPTIVE COLUMNS BUILT FOR TESTING

Cross Section Geometry and Size	Moments of	$\mathrm{ia}^{(a)}$ (In
Triangular Cross Section $(1.875$ inches on a side)	Caps	Core
$\begin{aligned} & 1 / 8^{\prime \prime} \text { caps } \\ & 1 / 4^{\prime \prime} \text { caps } \end{aligned}$	0.0229	$\begin{aligned} & .1106 \\ & .1106 \end{aligned}$
Square Cross Section (1.325 inches on a side) (b)		
$1 / 8$ " caps $1 / 4$ " caps	$\begin{aligned} & 0.0231 \\ & 0.1025 \end{aligned}$	$\begin{aligned} & 0.0937 \\ & 0.0937 \end{aligned}$
(a) With respect to the column's centrodial axis (b) Distance given is from the cap center to the adjacent cap center		

to the stresses obtained from the computer program via the plane stress element core.

$$
\begin{gather*}
\sigma_{p}=E\left(\frac{\varepsilon_{1}+\varepsilon_{3}}{2(1-\nu)}+\frac{1}{2(1+\nu)} \sqrt{\left(\varepsilon_{1}-\varepsilon_{3}\right)^{2}+\left(2 \varepsilon_{2}-\varepsilon_{1}-\varepsilon_{3}\right)^{2}}\right) \tag{23}\\
\sigma_{q}=E\left(\frac{\varepsilon_{1}+\varepsilon_{3}}{2(1-\nu)}-\frac{1}{2(1+\nu)} \sqrt{\left(\varepsilon_{1}-\varepsilon_{3}\right)^{2}+\left(2 \varepsilon_{2}-\varepsilon_{1}-\varepsilon_{3}\right)^{2}}\right) \tag{24}\\
\operatorname{Tan} 2 \emptyset=\frac{2 \varepsilon_{2}-\varepsilon_{1}-\varepsilon_{3}}{\varepsilon_{1}-\varepsilon_{3}} \tag{25}
\end{gather*}
$$

where: $\quad E=$ modulus of elasticity

$$
\begin{aligned}
\varepsilon_{1}= & \text { strain from strain gauge } 1 \\
\varepsilon_{2}= & \text { strain from strain gauge } 2 \\
\varepsilon_{3}= & \text { strain from strain gauge } 3 \\
\nu= & \text { Poisson's ratio } \\
\sigma_{p}= & \text { maximum principal stress } \\
\sigma_{q}= & \text { minimum principal stress } \\
\emptyset= & \text { orientation of the axis of the maximum principal stress, } \\
& \text { measured from strain gauge one in the direction of } \\
& \text { strain gauge three }
\end{aligned}
$$

See Appendix F for the computer program which determines the principal stresses and principal direction, given the three strains $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$.

CHAPTER 4

COMPUTER MODEL

As previously stated, the objective of this research effort is to develop a finite element computer model that can be used in the investigation of the captive column design. Specifically, the purpose of such a model is to study the effects of design modification--geometry, material, and loading patterns--before costly prototypes are built, while also analyzing the interrelationships of these variables in the captive column concept. This chapter describes the computer model evolved through this endeavor. Background

The finite element method has only recently become a useful tool for such an analysis, primarily because of the availability of fast computers with large storage space. It is still, however, as much an art as it is a very precise and exacting science. The user must be experienced in choosing elements, placing loads and constraints, numbering elements in the proper sequence, sizing elements, and other basic modelling tasks. For these reasons, the final computer program(s) used to analyze any structure is best arrived at by an interactive process of varying most or all of the above variables. Because there are so many such opportunities for even an experienced analyst to make errors, models should be verified whenever possible with test data. Typically, this is done by comparing computer model deflections and stresses with laboratory deflections and stresses. This report concentrates on this phase of model verification. That is, comparing classical beam theory deflections, experimental deflections and stresses, and deflections and stresses from the computer model. This is
the important first step in the development of a reliable computer model, which can then be employed in the design and optimization of captive column structures.

Two different types of captive columns were modelled. They are triangular and square cross-sectioned, simply-supported beams. The detailed properties and methods of fabrication are described in Chapter 2. Each captive column is 28 inches long. The equalateral triangular cross section is 1.875 inches on a side, between cap centers, while the square cross section is 1.325 inches on a side from cap center to cap center. Both columns when tested and modelled are loaded with a transverse force at the top in the middle of the column (see Figure 6). Structural Analysis Program

The computer model uses the Finite Element Structural Analysis Program (SAP IV) [7], available through the University of North Dakota Computer Center. This finite element program has a number of elements that can be used independently or in conjunction with one another to mathematically model a structure which, in this case, is the captive column. The accuracy of the model depends upon the correct combination, orientation, and physical size of these elements.

Input into the SAP program, besides defining nodal positions and element types, includes the following information:

Elements: 1) shape
2) cross-sectional area
3) moments of inertia
4) moduli of elasticity, moduli of rigidity
5) temperatures
6) poisson ratios

FIGURE 6 - CAPTIVE COLUMN TEST SPECIMENS
7) coefficients of thermal expansion
8) orthotropic directions

Nodes: 1) temperatures
2) degrees of freedom
3) applied forces and moments

Shown in Figure 7 are seven of the element types available in the SAP program. Figure 8 pictorially shows simply one, two, and three dimensional finite element structures. Shown in Figures 9 and 10 are the finite element nodal positions and numbering for the above mentioned captive columns. These nodal points define the physical size and geometry of the model and are used to connect elements to one another.

The nodal numbering, which is purely arbitrary, has an influence on the bandwidth. Band width can best be described as the length of the longest column of elements, in the stiffness matrix, from the diagonal to the last nonzero entry. The larger this bandwidth, the longer the computer solution time required. For a given structure, all numbering schemes lead to the same size stiffness matrix and the same number of nonzero terms; however, different numbering schemes lead to different arrangements of nonzero terms, which affect the bandwidth. Thus, to minimize bandwidth, a simple procedure is to number across the small dimension at one extremity of the structure and then number in succeeding adjacent rows until the whole structure has been covered $[8,9]$. This scheme has been used in both models.

In the future, especially with larger computer models, strict attention should be paid to this matter. For example, the ratio of computer solution time for the triangular column numbered along its longest dimension and the present system, numbered across the smallest dimension, is approximately five to one.

A. TRUSS ELEMENT

B. THREE-DIMENSIONAL BEAM ELEMENT

C. PLANE STRESS, PLANE STRAIN, AND AXISYMMETRIC ELEMENTS

D. THREE-DIMENSIONAL SOLID

E. VARIABLE-NUMBER-NODES

THICK SHELL AND THREE-DIMENSIONAL ELEMENT

F. THIN SHELL AND BOUNDARY ELEMENT

TANGENT

BEND
G. PIPE ELEMENT

FIGURE 8 - FINITE ELEMENT STRUCTURES

$\begin{aligned} & \text { Number of Nodes } \\ & \text { Number of }\end{aligned}=105$
Elements
aAp IVE COLUMN

Three element types are used in the computer model. They are described in Table 4.

Shown in Figures 11 through 13 are the physical representations of the captive column components in the finite element computer model. Naturally, many variations of the model are possible. This particular combination, as with all finite element models, is the culmination of intuition, experience, and trial and error. The material properties, the most definitive aspect of the model, were selected from the best available sources, usually the material manufacturer.

Even though the final element and material selections can only be justified by the validity of the model, certain element type applications are mandated. These will be discussed in detail for each captive column component--cap, core, and wrap--along with some of the other element types and configurations considered. Additionally, the two physical discrepencies occurring between the computer model and the real column are discussed.

They are: 1) the difference in the number of wrap elements used in the model and those on the actual column, and 2) using both beam and plane stress elements, which theoretically occupy a portion of the same physical space in the core. Both of these discrepencies are considered in detail under the following subtitles.

Output from the finite element structural analysis program is as follows:

1. Translations along and rotations about the x, y, and z axes for each nodal point.
2. Axial and shear forces, plus torsion and bending moments, at both ends (nodal points) of each beam element.
3. Normal, shear, and principal stresses and corresponding directions for each plane stress element.
4. Axial stress and force in each truss element.

TABLE 4
ELEMENT TYPES AND PROPERTIES USED IN THE COMPUTER MODEL

ELEMENT TYPE	Caps	Core		Wrap
	BEAM	PLANE STRESS	BEAM	TRUSS
Size	$\begin{gathered} 1 / 8 \mathrm{in} . \text { and } 1 / 4 \mathrm{in} . \text { dia. } \\ 2 \text { in. long (} \mathrm{T} \text {) } \\ 1.4 \mathrm{in} .10 \mathrm{l} \text { (} \mathrm{S}) \end{gathered}$	3/16 in. thick 2 in. $x 1$ in. (T) 1.4 in. x . 94 in. (S)	$\begin{gathered} 3 / 16 \text { in. } \times 3 / 16 \text { in. } \\ 1 \text { in. long (T) } \\ .94 \text { in. long }(S) \end{gathered}$	$\begin{aligned} & 0.0474 \mathrm{in} . \text { dia (T) } \\ & 0.0395 \mathrm{in} . \text { dia (S) } \\ & 2.739 \mathrm{in} .1 \mathrm{long}(\mathrm{~T}) \\ & 1.928 \mathrm{in} .10 \mathrm{ng}(\mathrm{~S}) \end{aligned}$
Modulus of Elasticity	$\begin{array}{r} 6 \times 10^{6} \mathrm{psi}(\mathrm{FG}) \\ 30 \times 10^{6} \mathrm{psi}(\mathrm{ST}) \end{array}$	$\begin{aligned} & E_{N}=13,400 \mathrm{psi}(\mathrm{~B}) \\ & E_{S}=400,000 \mathrm{psi} \\ & E_{T}=13,400 \mathrm{psi} \\ & E=450,000 \mathrm{psi} \\ & \text { (A) } \end{aligned}$	1.0 psi	$18 \times 10^{6} \mathrm{psi}$
Shear Modulus	NA	$\begin{array}{r} 18,000 \mathrm{psi} \\ 173,076 \text { psi (B) } \end{array}$	NA	NA
Poissons Ratio	. 3	$\begin{aligned} \gamma_{N S} & =.3(\mathrm{~B}) \\ \gamma \mathrm{NT}^{2} & =.3(\mathrm{~B}) \\ \gamma S T & =.04(\mathrm{~B}) \\ \gamma & =.3(\mathrm{~A}) \end{aligned}$. 3	. 3

where: (T) = Triangular cross section
$($ FG $)=$ Fiberglass
$(S T)=$ Stee 1
$(\mathrm{S})=$ Square cross section
(B) = Balsa wood
$(A)=A c r y l i c$

FIGURE 11 - FINITE ELEMENT CAPTIVE COLUMN CORE

FIGURE 13 - FINITE ELEMENT CAPTIVE COLUMIN WRAP

Core
By far, the core was the most difficult part of the captive column to model. Shown in Figure 14 are some of the element combinations attempted in modelling individual ribs of the core. Shown in Figure 15 is the final combination of elements selected. They are $3 / 16$ inch thick plane stress elements (same thickness as the actual balsa wood or plexiglass core) and $3 / 16$ inch by $3 / 16$ inch beam elements. Notice that the beam elements theoretically occupy a portion of the same physical space as the plane stress elements, an apparent disparity. The beam elements are included only to insure stiffness perpendicular to the plane stress elements. That is, plane stress elements withstand loads only in the two dimensional plane of the element. Loads perpendicular to the plane stress elements generate zeroes on the diagonal of the stiffness matrix, rendering the matrix, and ultimately the program, insolvable. Thus, to overcome this problem, beam elements are sandwiched in the core between the plane stress elements. However, to minimize their duplicative effect, the beam element modulus of elasticity is set at one psi or $2 / 10,000$ of one percent of the plane stress elements' modulus of elasticity. This, consequently, nullifies any effect the core beam elements have on the computer model. Therefore, for all practical purposes, the core is modelled only by plane stress elements. The beam elements are included only to guarantee equation compatability in the mathematical solution.

Caps
This element was the easiest component of the column to model. The caps carry not only axial loads, but very small moments as well. Therefore, circular SAP beam elements, equal in diameter and of the same material

B. CIRCULAR BEAM OR TRUSS ELEMENTS

C. CIRCULAR BEAM OR TRUSS ELEMENTS

D. BEAM ELEMENTS SHAPED LIKE PLATES

FIGURE 14 - ELEMENT TYPES AND PATTERNS

 EXAMINED IN MODELING THE CORE
properties as the actual caps, are specified. The only other possible SAP element type that could be used is the truss element, which should perhaps be considered in future modelling of larger systems because the number of degrees of freedom is reduced. Truss members do not carry a bending moment, but the moments in the actual cap are small when the diameter is relatively small.

Wrap
The triangular cross section computer model has one . 0474 inch diameter truss element, every two inches, on each side of the three sided column, for each of the two directions of wrap. Thus, six truss elements, two on each side of the column, every two inches, represent the wrap along the longitudinal axis of the column. A similar situation exists for the square cross section model. However, in this model the nodes, and therefore, the wrap elements, are 1.4 inches apart instead of two inches. This was done purposely so that the truss elements representing the wrap would be at 45 degrees, in both models, just as they are in the physical column. Thus, there are 84 wrap elements in the triangular column and 160 wrap elements in the square column.

The actual column has approximately twenty . 0078 inch diameter Kevlar strands uniformly distributed per inch along the column. The truss element area in the computer model was set equal to the area of the Kevlar strands which it displaces. For example, one truss element in the triangular model displaces forty Kevlar strands, requiring a .0474 inch diameter truss element.

$$
\left(40\left(\left(\frac{.0075}{2}\right)^{2} \cdot \pi\right)\right)=\left(\left(\frac{.0474}{2}\right)^{2}, \pi\right)
$$

The computer model wrap is an ostensible simplification of the actual column wrap. Ideally, each individual wrap filament would be modelled in the program. However, to define a truss element in the program, as mentioned before, a nodal point is required at each end of the element. This would require a total of 2,240 nodes for the triangular model or 2,800 nodes for the square model. This is obviously beyond the storage and computational capacity of the computer. Thus, one truss element represents forty Kevlar wraps in the triangular column and 28 Kevlar wraps in the square column. This is believed to be a reasonable approximation.

The wraps are modelled as trusses because the actual Kevlar wrap can transmit only axial forces and no moments. In fact, filamentous Kevlar transmits only axial tension forces and no compressive forces. Kevlar simply relaxes when in compression and does not carry a load. SAP truss elements will act in tension or compression according to the modulus of elasticity that is specified. Two different moduli cannot be specified, one for tension and one for compression, nor can the truss elements be directed to act only in tension or compression. This presented a significant problem in modelling the wraps because certain wrap elements do relax on the column when a load is applied. Therefore, to accurately model this phenomenon, the program must account for zero compressive forces in the truss elements that relax. This is done by identifying those truss elements that act in compression and assigning to them a modulus of elasticity of one psi. This compares to a modulus of $18 \times(10)^{6}$ psi for those wrap elements that act in tension. This task of identifying the tension and compression members for each loading pattern and material combination necessitates at least two runs of the computer model. In the first run, all the truss elements are assigned the higher value of $\mathrm{E}\left(18 \times 10^{6} \mathrm{psi}\right)$, and the column is loaded. Those
members that act in compression during this run are identified and assigned the lower value of E (1 psi) for the next run.

This procedure is done until all of the remaining wrap elements act in tension. This final program then represents the captive column for a specific loading pattern and material combination. Typically, for the bending loads considered, about one half of the wraps are removed (see Figures 30 and 31).

CHAPTER 5

EXPERIMENTAL APPARATUS AND PROCEDURES

This chapter describes the apparatus used and procedures followed in experimentally determining simply supported captive column midspan deflection and strain in the core. Four triangular and six square cross section captive columns were tested; all are of the size, shape, and construction as described in Chapter 2.

Deflection Measurement

The deflection of the top cap or caps was measured directly under the load with a Soil Test Inc. dial gauge. The gauge reads in .001 inch increments. The load was continuously applied, . 15 inches/minute, by a motorized Dillon Universal machine. The load was read from a 500 pound, 2 pound increment, scale. A 3/4 inch wide composite hardwood block, notched to fit the upper cap(s), transmited the load to the column. This block was positioned at the center of the column, 14 inches from either simply supported renetion (see Figures 16 and 17).

Each column was tested three times with the column rotated clockwise between tests so that a different $\operatorname{cap}(s)$ was the top, or load bearing, cap for each test. All of the columns were loaded past the 100 pound point, but not to destruction. A11 load-deflection test data is presented in Appendix

Strain Measurement

Experimental core strain was determined by strain gauging two captive column cores.

FIGURE 16 - MIDSPAN LOAD APPLICATION

FIGURE 17 - TEST CONFIGURATION FOR LOAD-DEFLECTION AND LOAD-STRAIN MEASUREMENTS

One rectangular strain rosette was epoxied to each of the two, acrylic core, square cross section, captive columns (each of the above mentioned columns were also tested for load deflection data). Each column had one strain rosette in the center of rib A, 3.5 inches from the middle of the column (see Figure 18). The three strain outputs from the rosette $--\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$-- were input into the formulas given in Chapter 3 to calculate the principal core stresses.

Both of these strain gauged captive columns were unique in that they had $3 / 16$ inch acrylic (Plexiglass) cores. Strain gauges were not placed on the other eight captive columns constructed with balsa wood cores because the epoxy used to attach the rosette penetrated into the wood and unpredictably altered its material properties. An acrylic core was chosen because it could readily be strain gauged and, also, it had a modulus of elasticity, similar to balsa wood, in the direction perpendicular to the caps.

Each column was tested for strain eight times. Each time the strain rosette was located in a different position, relative to the load. This was done by first rotating the column clockwise four times and then swinging the column end for end -- positioning the strain rosette on the other side of the load -- before rotating four times again. For clarity the eight different locations are shown in Figure 19. Note that the strain rosette is never removed from the rib to which it was originally attached, it is simply rotated into the eight different positions.

The same strain gauge pattern, and output, could have been achieved by placing eight strain gauges on the column and loading just once. However, strain rosette frugality dictated the use of one rosette and

FIGURE 18 - STRAIN ROSETTE ORIENTATION ON THE SQUARE CROSS SECTION CAPTIVE COLUMN

VIEW 1

FIGURE 19 - THE EIGHT STRAIN ROSETTE LOCATIONS ON THE SQUARE CROSS SECTION CAPTIVE COLUMN
eight loadings. (For the sagacious reader; four rosettes and two loadings or two rosettes and four loadings would also confer the same amount of strain information.)

The strain rosette outputs from the eight locations -- with three strain outputs per location and loading -- were recorded for two reasons. First, to average the strains from similar locations, thereby improving the experimental data, and second, to "average to zero" the plate bending stresses.

It should be apparent that the strains, and therefore the stresses, are symmetric about the midspan load. In fact, two planes of symmetry exist. One vertical plane passes through the point of load application, while the other vertical plane of symmetry extends along the longitudinal centrodial axis, through the center of the column (see Figure 20). Thus, the strain readings from locations 1 and 5, 2 and 8,3 and 7, and 4 and 6 (refer to Figure 19) should be equal due to the two planes of symmetry, and are therefore averaged to minimize any deviation due to experimental error. These four averaged strain locations -- I, II, III, and IV -with each location still having the three strains $--\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}--$ are shown in Figure 21. Keep in mind that this is the orientation from view one of Figure 19. Therefore, the locations correspond to locations 1, 2, 3, and 4 of that figure. Observe that since strains are symmetric about the load, locations $5,6,7$, and 8 could have been chosen without affecting the data, or the eventual comparison to the computer stresses. The three averaged strains at each of the four locations of Figure 21 are now used to compute the two principal stresses and one principal direction at each location. However, a problem exists.

The strain gauges, unlike the plane stress computer elements, account for both possible types of bending out of the plane of

VIEW 1

FIGURE 21 - THE FOUR AVERAGED STRAIN LOCATIONS
the core rib; that is, plate bending (see Figure 22). In order to compare the experimental results with the computer results, this plate bending, detected by the strain gauges, must be "subtracted" or averaged out from the principal stresses to leave only the in-plane stresses. The finite element plane stress core, as modelled in the computer simulation, can compute only in-plane stresses (see Chapter 4 for further discussion). The strains induced by plate bending are removed from the experimental data by averaging the strains of locations I and II, and locations III and IV of Figure 23A.

Because, as shown in Figure 20, a vertical plane, through and along, the column's centrodial axis is a plane of strains symmetry, Figure 23A can be shown as Figure 23B. Observe that experimentally determined strains are now available for each side of ribs A and D and/or ribs B and C, whichever is preferable. Averaging the strains of location I and II cancels the tensile bending strain of location I with the compressive bending strain of location II or vice versa, yielding values for only the in-plane strain. This averaging technique also applied for locations III and IV. Principal stress and directions are then determined from these strains via the computer program in Appendix F. These stresses are now directly comparable to the computer plane stress element output.

To summarize, three strains at eight different locations are reduced to two principal stresses and one principal angle at two locations. One location, above the neutral axis, provides the in-plane principal stresses and direction in rib A and/or rib B 3.5 inches on either side of the load. While the other location, below the neutral axis, provides the in-plane principal stresses and direction in rib C and/or rib D 3.5 inches on either side of the load. This condensation of raw strain data from eight positions

FIGURE 22 - TWO TYPES OF BENDING OUT OF THE PLANE OF THE CORE RIBS

FIGURE 23 - REARRANGEMENT OF LOCATION II AND III BECAUSE OF SYMMETRY
down to principal stresses and directions at two positions is possible because of the two planes of symmetry, with respect to strain, through the square cross section captive column.

CHAPTER 6

RESULTS

The results of the finite element computer model in predicting captive column midspan deflections and captive column core stresses are discussed in this chapter. Also discussed are the loads experienced by the captive column caps and wraps, as analytically computed and computer simulated; and how these elements, with the information from this research effort, can now be designed given the captive column load condition.

Additionally, the load deflection curves for four captive columns, that were tested to failure, are presented. Finally, discussions concerning the ability of the finite element computer model to simulate captive column pretension and column type loading are addressed.

Deflection Comparisons

Table 5 compares the slopes of the deflection versus load curves (lines) for the ten captive columns that were experimentally tested, computer modelled, and analytically calculated. Note that Table 5 does not list specific deflections for any given load. Rather, each number represents the slope of a linear deflection versus load line which passes through the origin. A specific deflection, in inches, is calculated by multiplying the load in question times the applicable number from Table 5. Recall that this is the deflection of the top cap(s), directly under the load, at the midspan of a captive column. For example, from Table 5, a 100 pound midspan load deflects the top $1 / 8$ inch diameter steel cap of a triangular cross section balsa wood core column -- . 157 inches experimentally, . 133 inches in the computer model, and .066 inches theoretically.

TABLE 5
THE SLOPES OF THE DEFLECTION VERSUS LOAD CURVES FOR THE TOP CAP(S)
OF A 28 INCH LONG CAPTIVE COLUMN, LOADED AT THE MIDSPAN

Columns	Triangular Cross Section			Square Cross Section		
	$\begin{aligned} & \text { Experimental } \\ & \left(10^{-3} \mathrm{in} / 1 \mathrm{~b}\right) \end{aligned}$	$\begin{gathered} \text { Computer } \\ \left(10^{-3} \mathrm{in} / 1 \mathrm{~b}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Theoretical } \\ & \left(10^{-3} \mathrm{in} / 1 \mathrm{~b}\right) \end{aligned}$	$\begin{aligned} & \text { Experimenta1 } \\ & \left(10^{-3} \mathrm{in} / 1 \mathrm{~b}\right) \end{aligned}$	$\begin{gathered} \text { Computer } \\ \left(10^{-3} \mathrm{in} / 1 \mathrm{~b}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Theoretical } \\ & \left(10^{-3} \mathrm{in} / 1 \mathrm{~b}\right) \end{aligned}$
Balsa Wood Core: 1/8 inch dia. steel caps	1.57	1.33	0.66	1.71	1.38	0.66
1/8 inch dia. fiberglass caps	4.67	4.18	3.27	4.44	4.07	3.27
1/4 inch dia. steel caps	0.81	0.73	0.148	0.76	0.75	0.148
1/4 inch dia. fiberglass caps	1.67	1.49	0.79	1.74	1.52	0.74
Acrylic Core: 1/8 inch dia. steel caps	NT	NT	NT	1.04	0.92	0.62
1/8 inch dia. fiberglass caps	NT	NT	NT	2.93	2.6	2.5

The data is presented in slope format, rather than deflections for a specified load, because each of the three cases -- experimental, computer, and theoretical -- generate linear deflection versus load curves (lines) passing through the origin. This is predictable for both the linear computer model and the theoretical calculations, but not intuitively obvious for the experimental case.

The experimental data that was recorded during the ten captive column tests plot into a definite linear relationship. Recall that the columns were not loaded to failure (Appendix B tabulates all of the deflection versus load data for the ten columns). This linear experimental relationship was quantified by a least squares analysis. The analysis generated the slope of the best fit line through the recorded data points. This computed slope is presented in Table 5 along with the computer derived slopes and the theoretical slopes.

A number of observations concerning the deflections comparisons can be made by examining Table 5.

1. The computer derived slope for each column (except for one case) is closer to the actual experimental slope than to the theoretical slope.

Table 6 shows the percent difference between the slopes of the three cases. Observe that the computer derived slope averages 11.6 percent and 10.4 percent less than the actual experimental slope (this compares to 55.5 percent and 56.6 percent difference between the experimental and theoretical slopes). This says that at loads below the yield point of the column the computer derived deflections are approximately 10 to 12 percent less than the actual deflections. This is considered good agreement and lends significant credibility to the finite element computer model for predicting captive column deflections.

TABLE 6
PERCENT DIFFERENCES BETWEEN THE THREE SLOPE CASES OF TABLE 5

Columns	Triangular Cross Section			Square Cross Section		
	$\begin{gathered} \text { Experimental } \\ \text { vs. } \\ \text { Computer } \\ \hline \end{gathered}$	$\begin{gathered} \text { Experimental } \\ \text { vs. } \\ \text { Theoretical } \\ \hline \end{gathered}$	Computer vs. Theoretical	\qquad	$\begin{gathered} \text { Experimental } \\ \text { vs. } \\ \text { Theoretical } \\ \hline \end{gathered}$	
Balsa Wood Core:						
1/8 inch dia. steel caps	15.3	58.0	50.3	19.3	61.4	52.2
1/8 inch dia. fiberglass caps	10.5	30.0	21.8	8.3	26.4	19.7
1/4 inch dia. steel caps	9.8	81.5	79.5	1.3	80.4	80.5
1/4 inch dia. fiberglass caps	10.7	$\underline{52.6}$	47.0	12.6	58.1	$\underline{52.0}$
AVERAGE:	11.6	55.5	49.7	10.4	56.6	51.1
Acrylic Core:						
1/8 inch dia. steel caps	NT	NT	NT	11.5	40.4	32.6
1/8 inch dia. fiberglass caps	NT	NT	NT	11.3	14.7	3.8
AVERAGE:				11.4	27.6	18.2

2. The order of slope magnitude for each column is experimental, computer, and theoretical. Experimental always having the largest slope (i.e. largest deflection for a given load).

Ideally, experimental, computer, and theoretical deflections would have been equal for each column tested. However, as seen in Table 5, this is not true. There relationship is, however, explainable in light of the assumptions inherent in the determinations of each of the slope. Primarily, the assumption of the computer analysis more closely approximate the real captive column behavior than the assumption inherent in the theoretical analysis.

The theoretical calculations assume ideal conditions. That is, no slippage occurs between the glued core and caps; the caps remain equidistant from each other at all times; the column retains its original geometry during loading; there is zero local deformation under the point of load application; and it assumes an ideal cross section, one where the strain surface remains plane. In short, this theoretical calculation, as applicable to the captive column, is probably not reasonable, ever attainable, but still useful. It serves as a bench mark by showing the least possible deflection, for a given loading pattern, of a given captive column.

The computer model is a step, and a significant step, toward modelling the real column. By defining specific properties for each incremental volume, via the finite element, the cap, core, and wrap deform, translate, and rotate according to the loads placed upon them while, simultaneously, satisfying the given material properties of the captive column element it models. Moreover, the cross section of the column is not constrained to remain symmetric.
3. The captive columns constructed with $1 / 4$ inch diameter caps have smaller slopes -- deflect less for a given load -- than comparable captive columns with $1 / 8$ inch diameter caps. Also, captive columns constructed with steel caps have smaller slopes than comparable columns with fiberglass caps.

This comparison verifies what is already known via beam theory. An increase in the moment of inertia, or the modulus of elasticity, of the load carrying area increases the modulus of rigidity of the beam.

However, a five fold increase in the modulus of elasticity of the caps -- 6×10^{6} for fiberglass to 30×10^{6} for steel -- does not, as theory predicts, decrease the experimental slope by five times. Instead, the steel capped columns deflect only one-half to one-third the amount that comparable fiberglass capped columns do at a given load. Additionally, increasing the moment of inertia of the caps 4.5 times -- $0.02298 \mathrm{in}^{4}$ to 0.1023 in 4-- via $1 / 8$ inch diameter caps to $1 / 4$ inch diameter caps, does not, as theory predicts, decrease the experimental slope by a factor of 4.5. Rather, the slope decreases by a factor of 1.7 to 2.7. Note that these comparisons are done on the captive columns with balsa wood cores. It is assumed, as suggested in Table 5, that the acrylic core assists the caps in carrying part of the applied load. Therefore, the acrylic core comparisons introduce another variable and are, for that reason, neglected here.
4. The columns built with $3 / 16$ inch acrylic cores have smaller slopes than comparable columns built with $3 / 16$ inch balsa wood cores.

The acrylic core captive column was built for two reasons. First, it could be strain gauged (see Chapter 5), and second, because it had a larger modulus of elasticity than balsa wood in the direction parallel to the caps; 450,000 psi compared to 13,400 psi. This longitudinal modulus
of elasticity of the core was thought to have an impact on the columns resistance to bending. By testing columns whose only difference is this longitudinal modulus of elasticity, the modulus of elasticity effect can be seen in the comparison of Table 5.

Note that the acrylic core columns deflect approximately one-third the amount of comparable balsa wood core columns. Also keep in mind that fiberglass and steel capped acrylic core columns weigh, respectively, 2.2 and 3.4 times their comparable balsa wood core columns.
5. The experimental slopes, in Table 5, for the triangular and square captive columns agree to within eight percent of each other. Likewise for the computer and theoretical slopes. For example, a triangular captive column with $1 / 4$ inch diameter steel caps and a balsa wood core has a slope of $.81 \times 10^{-3}$ inch/lb. While its square cross section counterpart has a slope of $.76 \times 10^{-3}$ inch/1b; yielding a 6.1 percent difference in the deflection versus load slope. A similar comparison can be made between the computer and theoretical slopes for these columns. This slope agreement between triangular and square cross section captive columns that have identical caps is no coincidence. The triangular and square cross section columns were designed so that the caps' moments of inertia, about the neutral axis, are equal for both geometries.

This comparison demonstrates two points. First, the EI product, modulus of elasticity times moment of inertia, of the caps -- and only the caps -- determines the slope of the midspan deflection versus load curve for beams with balsa wood cores. The geometry of the columns cross section is of secondary importance. The geometry-square or trianuglar, etc. is important primarily in the design of the most efficient I for the caps; That is, in the design of a column with the largest ratio of cap moment of
inertia to a column weight per lineal foot. Second, as shown in the two computer columns of Table 5 , the computer program accurately models this phenomenon.

Notice that the theoretical slopes also show this relationship. However, this is to be expected from examining the theoretical calculation of the $(E I)_{\text {eq }}$ for a column:

$$
(E I)_{\text {eq }}=E_{\text {core }} I_{\text {core }}+E_{\text {cap }} I_{\text {cap }}
$$

This (EI) eq is used in the following formula to determine deflections and, ultimately, slopes (see Chapter 3 for further details).

$$
\delta=\frac{\mathrm{FL}^{3}}{48(\mathrm{EI})_{\mathrm{eq}}}
$$

where: $\quad E_{\text {core }}=$ modulus of elasticity of the core $E_{\text {cap }}=$ modulus of elasticity of the caps $(E I)_{\text {eq }}=$ calculated $E I$ equivalent of the core and cap
$\mathrm{F}=$ load applied to the captive column
$I_{\text {cap }}=\begin{aligned} & \text { moment of inertia of all } \\ & \text { columns neutral axis }\end{aligned}$ the caps about the
$I_{\text {core }}=\begin{aligned} & \text { moment of inertia of the core about the columns } \\ & \text { neutral }\end{aligned}$
$L=$ length of the captive column
$\delta=$ midspan deflection
The calculated $E_{\text {cap }}{ }^{I}$ cap value for balsawood core columns is typically 100 times the $E_{\text {core }} I_{\text {core }}$ value for columns with fiberglass caps, and 450 times the $E_{\text {core }}$ I core value when steel caps are used. Thus, it is easy to see why, in the theoretical calculations, that the core ($E_{\text {core }}{ }^{I}$ core) has little impact upon the determination of (EI) $\mathrm{eq}^{\text {, and therefore, little }}$ impact upon the deflection (or slope) calculation.

Therefore, in summary, when comparing square and triangular captive columns that have identical caps ($E_{\text {cap }}$), and identical cap moments of inertia ($I_{\text {cap }}$), it's expected -- due to the insignificance of the balsa wood $\mathrm{E}_{\text {core }} \mathrm{E}_{\text {core }}$ term -- that the theoretical, experimental, and computer slopes of the two columns be similar.

Core Stress Comparisons

The results of the computer model derived core stresses and the experimentally determined core stresses are compared in Figures 24 through 27. Recall that these plane stress elements diagram the stresses at a point 3.5 inches to the left of a 100 pound midspan load. One of the plane stress elements is centered in rib A, one of the two ribs above the neutral axis, while the other plane stress element is centered in rib D, one of the two ribs below the neutral axis (see Chapter 5). Three points should be made when reviewing these figures.

First, good correlation exists between the computer model stresses and actual stresses. Not only does the order of magnitude of the principal stresses agree but the orientation of the two dimensional stress elements agrees. Indeed, for the case of the acrylic core with steel caps, Figure 24 , computer and experimental principal stresses differ by no more than twenty percent, while principal directions both agree to within eleven percent. In the case of the acrylic core with fiberglass caps, Figure 25, the computer and experimental stresses differ by 95 percent for the tensile stress in rib A and 74 percent for the compressive stress in rib D. However, the other principal stresses on each element agree very well, with less than eight percent difference. Additionally, the principal directions differ by 2 percent for rib A and 28 percent for rib D.

The second point to be made regards the magnitude and direction of the normal and shear stresses. Shown in Figures 26 and 27 are the same two

FIGURE 24 - PRINCIPAL CORE STRESSES FOR A $3 / 16$ INCH ACRYLIC CORE CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER STEEL CAPS

FIGURE 25 - PRINCIPAL CORE STRESSES FOR A $3 / 16$ INCH ACRYLIC CORE CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER FIBERGLASS CAPS

FIGURE 26 - NORMAL AND SHEAR STRESSES FOR A $3 / 16$ INCH ACRYLIC CORE CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER STEEL CAPS

FIGURE 27 - NORMAL AND SHEAR STRESSES FOR A $3 / 16$ INCH ACRYLIC CORE CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER FIBERGLASS CAPS
dimensional plane stress elements of Figures 24 and 25 . However, the elements have been rotated by the use of Mohr's circle, so they are aligned, or square, with the core. Now instead of principal stresses, normal stresses and shear stresses are diagramed.

Observe that the normal stress perpendicular to the caps is in all cases relatively small (1.6 to 62 psi). Also observe that the computer model indicates that this stress is, in all four cases, compressive while the experimental results indicate a compressive stress in two out of the four cases. This discrepancy in the direction and magnitude of experimental stresses can possibly be attributed to the averaging technique, used to "subtract" or average out the two possible modes of plate bending stress (see Chapter 5), or errors in the computer model as well. However, for design purpose the determination of this tensile or compressive stress is possibly insignificant. Since, as mentioned before, the stress magnitude is small, relative to the other normal stresses at 100 lb . and relative to the tensile and compressive strength of balsa wood, for both the computer and experimental results. Also, observe that the magnitude and direction of normal stresses parallel to the caps agree to within 7.9 percent, while shear stresses compare to within 7.3 percent for the steel capped column and 47.2 percent for the fiberglass capped column.

Implied by the good stress comparisons of Figures 24 through 27 is the potential usefulness of the finite element model in future captive column core designs. Stresses, and therefore forces, in any direction, at any 10cation, in the core can be predicted. Specifically, the stresses in the core due to inward cap buckling, beam bending, and shear for any given loading pattern can be analyzed and ultimately designed for.

The third, and decisive, point to be discussed is what the plane stress diagrams say concerning the purpose and function of the core in the captive column concept. These observations are now outlined.

Computer and experimental stresses perpendicular to the caps are observed to be insignificant. Initially, it was hypothesized that inward cap buckling placed the largest loads on the core. Promoting this line of reasoning was the current construction practice of orientating the balsa wood grain perpendicular to the caps. Balsa wood, having the largest modulus of elasticity in the direction of the grain -- 400,000 psi compared to 13,400 psi against the grain -- is, naturally, the strongest or most rigid in this direction. Now, in light of the core stress analysis, this reasoning, but not the construction practice, appears in jeopardy. Captive column construction experience proves, without doubt, that the grain of balsa wood cores must run perpendicular to the caps. Any other orientation of the balsa wood yields a captive column core that cannot even withstand the stress imposed upon it during wrapping. That is, the column torques, bends, and deforms beyond use during the wrapping process. Therefore, the following theory of balsa wood orientation is presented for discussion and future analysis.

The grain of the balsa wood is orientated perpendicular to the caps primarily to withstand the stress induced in the core due to wrap pretension. Recall that neither the computer model stresses nor the experimental stresses account for the possibility of prestress in the core due to the wrap pretension. Both sets of data only model or record the core stresses induced because of the load applied to the column. Therefore, stresses in the core because of wrap pretension were neither computer modelled nor experimentally measured. Modelling the wrap pretension in the computer program was at-
tempted but, as explained under subtitle -- wrap pretension -- of this chapter, was not successful.

In the case of the experimentally determined stress, the strain gauges are zeroed when the core is in the prestressed condition. Understandably, then, the gauges measure only the strain in the core due to the applied loading. That is, if the initial condition of the core is one of a nonzero stress, the strain gauges will not detect this stress because they are forced to assume zero strain, and therefore zero stress, at the no load condition.

However, at the conclusion of the experimental testing, all of the Kevlar wraps on the square, acrylic core, $1 / 8$ inch diameter steel capped captive column were cut. The strain gauges were set at zero strain, and therefore zero stress, in this uncut, no load, mode. Therefore, cutting the wraps relieved the initial prestress enabling the zeroed strain gauges to measure, in a negative direction, this wrap induced core prestrain (prestress). The results show a two dimensional principal core stress element, for rib A, orientated at 78.4 degrees with the horizontal and having normal tensile stresses of 408 psi and 632 psi (actually wrap induced compressive stresses). These numbers were compared with those of rib A, Figure 24 , which are for a 100 pound midspan load. Notice that the magnitude of the normal wrap induced core prestress, for this, the only core tested, is 3.7 and 7.4 times greater than the normal core stresses resulting from a 100 pound midspan load.

Perhaps, then, the construction and material properties of the core are dependent upon the wrapping pretension rather than the load induced normal stresses.

Axial Cap Forces

Table 7 compares the computer program axial cap forces, at a point directly under a 100 pound applied load, to theoretically calculated axial

TABLE 7

MAXIMUM AXIAL CAP FORCES FOR A 100 POUND MIDSPAN LOAD

Column	Triangular Cross Section (Top Cap)	Square Cross Section (Top Caps)	
	Calculated $(1 \mathrm{~b})$	$\frac{\text { Computer }}{(1 \mathrm{~b})}$	$\frac{\text { Calculated }}{(1 \mathrm{~b})}$

cap forces. This calculation assumes that the caps carry the entire applied load. That is, the core and wrap are insignificant as load bearing members. The calculation to determine this cap force $\left(F_{C}\right)$ is computed as follows:

$$
\begin{equation*}
\left(\frac{F}{2}\right)\left(\frac{L}{2}\right)=M=N \cdot F_{C} \cdot D \tag{1}
\end{equation*}
$$

$$
\text { where: } \quad \begin{aligned}
F & =\text { applied load } \\
L & =\text { length of the captive column } \\
M & =\text { moment } \\
\mathrm{N} & =\text { number of caps above the neutral axis } \\
\mathrm{F}_{\mathrm{C}}= & \text { axial force in the caps } \\
\mathrm{D}= & \text { distance between caps (i.e. distance } \\
& \text { between the lines of action of the } \\
& \text { two forces; a couple) }
\end{aligned}
$$

In effect, this calculation assumes that the caps form a couple of magnitude M which develops the internal resisting moment.

The comparisons of Table 7 indicate three points.

1) The computer model derived axial cap loads agree to within 10.4 percent of the calculated axial cap loads. This excellent agreement proves, as hypothesized, that the caps form a couple of magnitude $M=N \cdot F_{C} \cdot D$ forming the internal resisting moment. Further, an extension of this line of reasoning says that the balsa wood core contributes very little to the load carrying capacity of the column. This can be shown more clearly by two simple diagrams. First, shown in Figure 28 are typical shear and moment diagrams for a beam (captive column) carrying a midspan load. Superimposed on the beam moment diagram, Figure 28C, is the computer calculated moment diagram for just the captive column caps. The small shaded area on the moment diagram represents that minute moment which is

FIGURE 28 - BEAM LOADING PLUS THE CORRESPONDING SHEAR AND MOMENT DIAGRAMS
not carried by the caps, and therefore, must be carried by other components of the captive column.

Second, Figure 29A diagrams the bending stress distribution through a captive column cross section. Note the large stress concentration at the caps. This stress pattern is quite different from the linear distribution shown in Figure 29B for beams constructed of one material.
2) From point 1 above, it is apparent that a method now exists to calculate the axial force in the caps for a given loading pattern. This makes it possible to design the caps of a captive column so that the cap stress is below the yield stress of the cap material.

For instance, from Table 7, the caps of the captive column with $1 / 8$ inch diameter steel caps, balsa wood core, and a square cross section will experience an axial force of approximately 264 pounds per cap for an applied midspan load of 100 pounds. This creates a normal stress of:

$$
\begin{equation*}
\frac{\mathrm{F}_{\mathrm{C}}}{\mathrm{~A}}=\frac{2641 \mathrm{bs}}{\frac{\pi(1 / 8) 2}{4}}=21,512 \mathrm{psi} \tag{2}
\end{equation*}
$$

which is well below the 60,000 psi tensile or compressive yield stress of steel. Therefore, if the 100 pound midspan load is the largest load expected on this column the diameter of the caps could be reduced or a different, perhaps lighter, material, with a smaller yield stress, could be used for the caps. Also, this design approach is conservative.
3) The third point to be discussed from Table 7 is the large difference, 24.6 percent, between the computed and computer derived axial cap forces for the columns built with acrylic cores.

Recall that the calculated forces of Table 7 assume, via formula 1, that the entire applied load is carried by the caps. In the computer program this constraint is not made. Therefore, the difference between the

A) Bending stress distribution of a captive column cross section

B) Cross section showing a typical bending stress distribution for a beam constituted of one material
calculated and computer derived axial forces is the amount which is carried by the core and/or the wrap. Observe that this difference is much greater (24.6 percent versus 7.2 percent) for columns with acrylic cores than for columns with balsa wood cores. Since the only difference between the balsa wood and the acrylic core columns is the modulus of elasticity parallel to the caps, the following conclusions can be made. Increasing the modulus of elasticity of the core in the direction parallel to the caps increases the load carrying capacity of the core, while decreasing the forces on the caps. Moreover, as this modulus of elasticity is increased, until it equals the modulus of elasticity of the caps, the bending stress distribution approaches the diagram of Figure 29B.

Wrap Elements

Figures 30 and 31 show the computer wrap elements remaining in tension for triangular and square cross section captive columns which experience a 100 pound midspan load. Recall from Chapter 4 the laborious process of identifying and redefining the modulus of elasticity for compressive wrap members. Although these two figures show representative wrap elements that remain in tension, the other eight columns do differ slightly in the number and location of tensile wraps. However, the wraps in tension on the sides of Figure 30 and 31 are the same for all triangular and square cross section columns. The difference, then, in the number and location of the tension wraps occurs only on the bottom of the triangular cross section column; and on the bottom and top of the square cross section column. Table 8 gives the number of wraps remaining in tension for each column under a 100 lb . midspan load.

The force experienced by the computer model wrap elements ranges from 10 to 59 lbs. for the triangular cross section column, and 3 to 33 lbs . for

FIGURE 30 - COMPUTER WRAP ELEMENTS REMAINING IN TENSION FOR A $1 / 8$ INCH DIAMETER FIBERGLASS CAPPED CAPTIVE COLUMN, WITH A $3 / 16$ BALSA WOOD CORE

TABLE 8
THE NUMBER OF COMPUTER WRAP ELEMENTS REMAINING IN TENSION FOR A 100 POUND MIDSPAN LOAD

Column	$\frac{\text { Triangular Cross Section }}{(84 \text { possible })}$	$\frac{\text { Square Cross Section }}{(160 \text { possible })}$
Balsa Wood Core:		
$1 / 8$ inch dia. steel caps	44	80
$1 / 8$ inch dia. fiberglass caps	44	84
$1 / 4$ inch dia. steel caps	40	80
$1 / 4$ inch dia. fiberglass caps	44	76
Acrylic Core:	NT	64
$1 / 8$ inch dia. steel caps	NT	88
$1 / 8$ inch fiberglass caps		N
NT Not Tested		

the square cross section column. Since each computer model wrap represents 40 Kevlar strands in the triangular column and 28 Kevlar strands in the square column (see Chapter 4), the maximum wrap force, and wrap stress, can be calculated for each column. For the triangular case 59 pounds/ 40 strands equals 1.475 pound per strand or 30,900 psi. For the square column 33 pounds/28 strands equals 1.178 pounds per strand or 24,700 psi. Both of these stresses are well below the 400,000 psi tensile strength of the . 0078 inch diameter Kevlar that was used to wrap the tested columns.

Observe that this type of computer analysis could be employed in the design of captive column wrap, identifying those areas of high wrap loading while also specifying adequate wrap material and the proper wrap density (wrap density is the term coined to describe the number of wraps per lineal inch along the column).

Two additional points should, however, be mentioned. First, the method of determining wrap forces is based upon the assumption of a rigid cap to wrap connection. If this epoxied connection is not as strong as the wrap itself, the epoxy, not the wrap, becomes the limiting design feature. Second, the wrap forces derived by the computer model do not include the initial wrap pretension (see the following subtitle -- Wrap Pretension) which ranges from two to five pounds per strand. This pretension must be measured or selected during the wrapping process and then added to the computer derived wrap forces in order to adequately design the wrap for a given loading pattern. For instance, adding a two pound wrap pretension to the computer derived force of 1.475 pounds, computed above, yields a total force of 3.475 pounds or 72,700 psi tensile stress. Likewise for the square cross section column, 1.178 pounds plus a 2 pound wrap pretension yields a total wrap force of 3.178 pounds or 66,500 psi tensile stress per strand.

Wrap Pretension

The wrapping machine applies, during the final phase of captive column construction, a filament wrap at 2 to 5 pounds of tension (See Chapter 2 for further details). The original finite denent computer models attempted to model this pretension by making use of the induced thermal load capabilities of the finite element SAP IV program. However, for reasons discussed below, this wrap pretension simulation was dropped from the computer analysis.

Nodal and element temperatures along with an element coefficient of linear thermal expansion can be input into the program. The computer program averages the two nodal temperatures for each wrap element and subtracts this temperature from the specified wrap element temperature. The difference is multiplied by the coefficient of expansion which induces expansion or contraction (element contraction in this case) of the element. The contraction or expansion of the wrap elements induce a pretension, or precompression, for each wrap element. It was thought that this thermally induced pretension would accurately model the construction pretension.

It was discovered, however, that this temperature induced pretension does not alter the fundamental computer stiffness matrix. Rather, it shifts the load-deflection curve to the right or left, depending upon whether contraction or expansion is induced. In this case, it shifted the curve to the right, since thermal contraction was induced.

Looking at Figure 32 two observations become apparent. First, the curves are parallel, and second, because of the induced pretension the top cap(s) of the column is theoretically deflected in the unloaded condition. Realistically the top cap(s) would deflect slightly toward the center of the column when wrapped. However, for computer model verification purposes

the primary concern is differential deflection between the loaded and unloaded condition. Since both curves are parallel, identical slopes, it is desirable to use the curve passing through the origin for load-deflection comparisons. Thus computer pretension was not used in any of the ten programs which model their respective captive columns.

Captive Columns Tested To Failure

The ten captive columns that were tested for deflection and core stress data were not loaded to failure. They were saved and will be used for further computer model verification. However, four similar captive columns were tested to failure, or more specifically, loaded past their ultimate strength. Their load-deflection curves are given in Figures 33 through 36 to provide the reader with an idea of the relative strength and behavior of the captive column.

A comparison of the ultimate strengths for the different columns, or an investigation into the significant factors influencing the ultimate strength, were not undertaken in this research effort. It can be mentioned, however, that the observed mode of failure in most cases for these columns, and other columns loaded past their ultimate strength, by a midspan point load, is a localized horizontal side translation, directly under the load, of the top loadbearing cap(s). This translation is diagramed in Figure 37 for a triangular cross section column. A similar situation exists for the square cross section column.

FIGURE 33 - FLEXURE TEST TO DESTRUCTION OF A TRIANGULAR COLUMN WITH 5/16 INCH DIAMETER FIBERGLASS CAPS

FIGURE 34 - FLEXURE TEST TO DESTRUCTION OF A SQUARE COLUMN WITH $1 / 8$ INCH DIA. FIBERGLASS CAPS

FIGURE 36 - FLEXURE TEST TO DESTRUCTION OF A TRIANGULAR COLUMN WITH $1 / 8^{\prime \prime}$ DIA. STEEL CAPS

FIGURE 37 - OBSERVED MODE OF FAILURE FOR CAPTIVE COLUMNS LOADED PAST THEIR ULTIMATE STRENGTH

CHAPTER 7

CONCLUSION

A general method of modelling the captive column using finite element techniques has been established. Specifically, two finite element computer programs were developed . One models a triangular cross section captive column 1.875 inches on a side and 28 inches long. The other models a square cross section captive column 1.325 inches on a side and 28 inches long. A total of ten captive columns, with these dimensions, were also constructed and statically tested under a midspan load. The validity of the computer models were corroborated by comparing the computer model midspan deflections and the internal core stresses with the actual experimental test data. The results of these comparisons are as follows.

Computer model deflections at the midspan of the column, under a concentrated load, were 10 to 12 percent less than the actual experimentally measured deflections. Furthermore, for the captive columns with steel caps, the computer model core stresses, at a point 3.5 inches on either side of the midspan load, differ by no more than 20 percent from the experimentally measured core stresses. For the captive columns with fiberglass caps, the computer model core stresses differ by 95 percent and 74 percent for the algebraically smallest principal stress and less than 8 percent for the other, larger, principal stress. Principal directions of the two dimensional stress element differed by no more than 11 percent for the steel capped captive column and from 2 to 28 percent for the fiberglass capped captive column.

Besides confirming the validity of finite element techniques in modelling captive columns, the computer models can also be used in the design
and specification of the three captive column components. Specifically, a method was developed for designing captive column caps -- given the loading pattern, column geometry, and maximum applied load -- so that the axial load in the caps would not exceed the yield stress of the cap material. Also, a method was developed for designing the captive column wraps. This method considers both the initial wrap pretension and the individual wrap forces experienced due to the applied load. Furthermore, with the aid of the computer model, variable wrap densities along the length of the column can be specified. Finally, in Chapter 6, the significance of the anisotropic modulus of elasticity of the balsa wood core was discussed. It was suggested that the largest modulus of elasticity of the core should be in the direction perpendicular to the caps primarily to restrict inward cap deflection during the construction wrapping process. Also, increasing the modulus of elasticity of the core material in the direction parallel to the caps increases the flexural load carrying capacity of the core, while decreasing the axial forces in the caps.

Discussion

Understanding, with the intent of designing, the three captive column components will require more than computer and theoretical verification of the experimentally observed phenomena. It will require an understanding of the relationships between the caps, the core, and the wraps. That is, discerning how these conjunctive captive column components act and react; how a design variation in one element impacts the other two elements; and most importantly how the properties of the captive column relate back to established and indisputable beam and column theory. These questions are of course the intent of this research effort and have not, at this time, been completely answered. However, at this, the summation of one phase of the research effort, it is imperative to regress from the geometrical progression
of investigating smaller and smaller units of the problem and stop to integrate those discrete bits of information into an abstract concept.

As mentioned in Chapter 2, beam theory establishes that an increase in either, or both, the moment of inertia or modulus of elasticity of a beam increases it's flexural rigidity and therefore it's load carrying capacity at a given deflection. Ideally then, a beam should be constructed with a material having a large modulus of elasticity (and ultimate strength), while incorporating as much of this material as far from the neutral axis as possible. This, of course, is the rational behind the structural I-beam. However, two problems exist. First, total beam weight, and second, physical size. Both of these are important design and economic considerations.

The captive column addresses both of these problems. Generally, in common structural members, the material used to support the flanges (in the case of the captive column, the caps) away from the neutral axis is the same material as that of the flanges (caps). This significantly increases the weight of the beam without increasing it's load carrying capability. However, if these flanges (caps) could be rigidly supported by a lightweight web (in the case of the captive column, the core), the total weight of the beam could be reduced without sacrificing the beams load carrying capacity. Furthermore, the larger the distance from the flanges (caps) to the neutral axis and the larger the modulus of elasticity of the flanges (caps), the smaller the cross sectional area of the flanges (caps) needs to be in order to maintain the same flexural rigitity. Again, this leads to a weight reduction.

Conversely, a smaller cross section captive column can be achieved, for a given flexural rigidity, by increasing the caps modulus of elasticity and correspondingly decreasing the moment of inertia by reducing the distances of the caps from the neutral axis.

The key requirement, and the reason for wrapping the captive column, is to rigidly support the caps in their original position. Known lightweight core materials, when used alone to support the caps away from the neutral axis, do not have the structural integrity to maintain the caps in their original position, relative to each other, during load application. The core, along with the attached caps, twist, bend, and deform rendering the entire beam useless. However, the application of a lightweight, high strength wrap material assists the core in supporting and captivating the load bearing caps in their original geometry, while also uniting the three components into an integral unit.

Thus, the captive column can be viewed as a refinement of well-known structural design techniques. By selecting lightweight, high-strength, and high modulus of elasticity material such as balsa wood, glass reinforced polyester, and Dupont Kevlar, a lightweight structural composite with a high strength to weight ratio can be assembled.

This, of course, hinges on the important, and as yet not completely identified, captive column design criteria; the determination of the loads experienced by the cap, core, and wrap. Once the design variables are understood, a lightweight core and wrap can be specified which will withstand the same maximum applied load as the load bearing caps, thereby creating a structural composite where the three components will fail simultaneously under the maximum applied load.

APPENDICES

APPENDIX A

COMPUTER CONTROL CARD DESIGNATING SYSTEM

Because of the large number of different computer models tried it was necessary to design a control card designating system to inventory the program decks. This system is presented below for those who continue my work and may need to use these programs.
Column Symbol Explanation Designating The

APPENDIX B

EXPERIMENTAL DATA

TABLE 9

LOAD-DEFLECTION DATA FOR A TRIANGULAR CROSS SECTION CAPTIVE COLUMN WITH 1/8 INCH DIAMETER STEEL CAPS; 3/16 INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 DENSITY, KEVLAR WRAP, AND A PINE CENTERPIECE

Dial Gage Reading$10^{-3} \mathrm{inch}$	1st		2nd		3rd	
	Def1	Load	Def1	Load	Def1	Load
	10^{-3} inch	Lbs	$10^{-3} \mathrm{inch}$	Lbs	10^{-3} inch	Lbs
775	25	10	25	12	25	10
750	50	25	50	27	50	26
725	75	36	75	43	75	42
700	100	54	100	58	100	57
675	125	72	125	75	125	76
650	150	89	150	92	150	94
625	175	103	175	108	175	108
600	200	116	200	120	200	120
	Side Wraps	Very	Same a	(1)	Same	(1)
Q111011]	Loose, Can Take a Lar	Prob er				

Notes: 1) Load applied with triangular harness
2) Dillon machine with 500 1b scale
3) $1 / 8^{\prime \prime}$ steel caps, $3 / 16^{\prime \prime}$ balsa core with glued sections and a pine center, 45° Kevlar wrap
4) Column built by Dave
5) No twist in the column

$$
W t=205.7 \mathrm{gm}=0.45 \mathrm{lbs}
$$

FIGURE 38 - LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 9 DATA

TABLE 10

LOAD-DEFLECTION DATA FOR A TRIANGULAR CROSS SECTION CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER FIBERGLASS CAPS; 3/16 INCH BALSA WOOD CORE; 45°, .0078 INCH DIAMETER, 20 DENSITY, KEVLAR WRAP, AND A PINE CENTERPIECE

Dial Gage Reading 10^{-3} inch	1st		2nd		3rd	
	Def1	Load	Def1	Load	Defl	Load
	10^{-3} inch	Lbs	$10^{-3} \mathrm{inch}$	Lbs	$10^{-3} \mathrm{inch}$	Lbs
800	25	8	0	0	0	0
775	50	12	25	8	25	7
750	75	16	50	13	50	14
725	-	-	75	21	75	21
700	125	25	100	29	100	31
650	175	32	150	36	150	41
600	225	45	200	50	200	46
550	275	54	250	58	250	54
500	325	66	300	68	300	64
450	375	77	350	80	350	77
400	425	89	400	93	400	90
350	475	103	-	-	-	-
V/\1]	Side Wr Very Lo		Wrap not as loose	quite as (1)	Same a	(2)

Notes: 1) Load applied with triangular harness
2) Dillon machine with 500 1b scale
3) $1 / 8^{\prime \prime}$ fiberglass caps, $3 / 16^{\prime \prime}$ balsa core with glued sections and a pine center, 45° Kevlar wrap
4) Column made by Dave
5) $3 / 16^{\prime \prime}$ twist over $28^{\prime \prime}$ length, slight bow to the column

$W t=108.8 \mathrm{gm}=0.24 \mathrm{bs}$

FIGURE 39 - LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 10 DATA

TABLE 11

LOAD-DEFLECTION DATA FOR A TRIANGULAR CROSS SECTION CAPTIVE COLUMN WITH $1 / 4$ INCH DIAMETER STEEL CAPS; $3 / 16$ INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 DENSITY, KEVLAR WRAP AND A PINE CENTERPIECE

Dial Gage Reading$10^{-3} \mathrm{inch}$	1st		2nd		3rd	
	Defl	Load	Def1	Load	Def1	Load
	10^{-3} inch	Lbs	10^{-3} inch	Lbs	10^{-3} inch	Lbs
840	20	18	0	, 0	20	16
820	40	33	20	14	40	36
800	60	50	40	34	60	58
780	80	75	60	58	80	79
760	100	105	80	86	100	104
740	120	135	100	115	120	130
720	140	159	120	144	140	153
700	160	186	140	169	160	174
680	-	-	160	195	180	198
				Cr		
Q7/1]	Side wra could pr take mor core wou	s 100 bably 1oad dn't	Same	(1)	Same	(1)

Notes: 1) Load applied with triangular harness
2) Dillon machine with 500 1b scale
3) $1 / 4^{\prime \prime}$ steel caps, $3 / 16^{\prime \prime}$ balsa core with sections glued and a pine center, 45° Kevlar wrap
4) Column made by Dave
5) No twist in column

$$
\mathrm{Wt}=628.0 \mathrm{gm}=1.38 \mathrm{lbs}
$$

TABLE 12

LOAD-DEFLECTION DATA FOR A TRIANGULAR CROSS SECTION CAPTIVE COLUMN WITH 1/4 INCH DIAMETER FIBERGLASS CAPS; 3/16 INCH BALSA WOOD CORE; 450, . 0078 INCH DIAMETER, 20 DENSITY, KEVLAR WRAP AND A PINE CENTERPIECE

Dial Gage Reading 10^{-3} inch	1st		2nd		3rd	
	Def1	Load	Def1	Load	Def1	Load
	10^{-3} inch	Lbs	10^{-3} inch	Lbs	$10^{-3} \mathrm{inch}$	Lbs
900	25	7	-	-	25	8
875	50	20	0	0	50	21
850	75	35	25	9	75	28
825	100	50	50	17	100	39
800	125	66	75	26	125	52
775	150	80	100	38	150	69
750	175	97	125	52	175	86
725	200	114	150	68	200	102
700	225	132	175	84	225	118
675	250	146	200	99	250	135
650	-	-	225	116	275	150
625	-	-	250	134	-	-
V7/7]117	Side wrap (not quit loose as with $1 / 4$	$\begin{aligned} & \text { loose } \\ & \text { as } \\ & \text { quare } \\ & \text { ibergl } \end{aligned}$	Same a	(1)		

Notes: 1) Load applied with triangular harness
2) Dillon machine with 500 1b scale
3) $1 / 4^{\prime \prime}$ fiberglass caps, $3 / 16^{\prime \prime}$ balsa core with glued sections and a pine center, 45 Kevlar wrap
4) Column made by Dave
5) $1 / 16^{\prime \prime}$ twist over 28 " length

$$
\mathrm{Wt}=211.9 \mathrm{gm}=0.47 \mathrm{lbs}
$$

FIGURE 41 - LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 12 DATA

TABLE 13
LOAD-DEFLECTION DATA FOR A SQUARE CROSS SECTION CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER STEEL CAPS; $3 / 16$ INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 DENSITY, KEVLAR WRAP AND A PINE CENTERPIECE

Notes: 1) Load applied with square harness
2) Dillon machine with 500 1b scale
3) $1 / 8^{\prime \prime}$ stee 1 caps, $3 / 16^{\prime \prime}$ balsa core with glued sections and a pine center, 45° Kevlar wrap
4) Column made by Dave
5) No apparent twist in column

$$
W t=256.2 \mathrm{gm}=0.56 \mathrm{lbs}
$$

FIGURE 42 - LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 13 DATA

TABLE 14

LOAD-DEFLECTION DATA FOR A SQUARE CROSS SECTION CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER FIBERGLASS CAPS; 3/16 INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 DENSITY, KEVLAR WRAP AND A PINE CENTERPIECE

Notes: 1) Load applied with square harness
2) Dillon machine with 500 1b scale
3) $1 / 8^{\prime \prime}$ fiberglass caps, $3 / 16^{\prime \prime}$ balsa core with glued sections and a pine center, 45° Kevlar wrap
4) Column made by Dave
5) No twist in the column

$$
\mathrm{Wt}=126.1 \mathrm{gm}=0.28 \mathrm{lbs}
$$

FIGURE 43 - LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 14 DATA

TABLE 15

LOAD-DEFLECTION DATA FOR A SQUARE CROSS SECTION CAPTIVE COLUMN WITH $1 / 4$ INCH DIAMETER STEEL CAPS; $3 / 16$ INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 DENSITY, KEVLAR WRAP AND A PINE CENTERPIECE

Dial Gage	1st		2nd		3rd		4th	
Reading	Def1	Load	Def1	Load	Defl	Load	Def1	Load
10^{-3} inch	$10^{-3} \mathrm{in}$	Lbs						
800	0	0	0	0	0	0	0	0
780	20	13	20	18	20	8	20	20
760	40	38	40	42	40	26	40	43
740	60	68	60	68	60	46	60	70
720	80	97	80	98	80	70	80	97
700	100	126	100	127	100	95	100	120
680	120	153	120	156	120	122	120	142
660	140	178	140	181	140	148	140	168
640	160	204	160	206	160	174	-	-
620	-	-	-	-	180	200	-	-
	Side Wraps		Same as (1)		Same as (1)			
V77110	Loose, Can							
471	Take a Greater							

Notes: 1) Load applied with square harness
2) Dillon machine with 500 1b scale
3) $1 / 4^{\prime \prime}$ steel caps, $3 / 16^{\prime \prime}$ balsa core with glued sections and a pine center, 45° Kevlar wrap
4) Column made by Dave
5) $1 / 16^{\prime \prime}$ twist over 28 " length

$$
\mathrm{Wt}=823.4 \mathrm{gm}=1.81 \mathrm{lbs}
$$

FIGURE 44 - LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 15 DATA

TABLE 16

LOAD-DEFLECTION DATA FOR A SQUARE CROSS SECTION CAPTIVE COLUMN WITH $1 / 4$ INCH DIAMETER FIBERGLASS CAPS; $3 / 16$ INCH BALSA WOOD CORE; 45°, . 0078 INCH DIAMETER, 20 DENSITY, KEVLAR WRAP AND A PINE CENTERPIECE

Dial Gage Reading 10^{-3} inch	1st	2nd		3rd		4th	
	Def1 Load	Def1	Load	Defl	Load	Def1	Load
	10^{-3} in Lbs	10^{-3} in	Lbs	10^{-3} in	Lbs	$10^{-3} \mathrm{in}$	Lbs
800	259	0	0	25	10	0	0
775	$50 \quad 21$	25	8	50	25	25	6
750	$75 \quad 35$	50	21	75	40	50	19
725	10051	75	36	100	52	75	35
700	$125 \quad 65$	100	50	125	66	100	48
675	15077	125	65	150	79	125	61
650	17591	150	79	175	93	150	75
625	200106	175	95	200	106	175	89
600	225122	200	108	225	120	200	105
575	250138	225	124	250	135	225	121
550	- -	250	138	275	150	250	136
525	- -	275	154	-	-	-	-
	Side Wrap Very	Side W	ap is				
V/7/10	Loose, Can	Looser	Not				
4/10	Probably Take More Load	Much M	re Lo				

Notes: 1) Load applied with square harness
2) Dillon machine with 500 lb scale
3) $1 / 4^{\prime \prime}$ fiberglass caps, $3 / 16^{\prime \prime}$ balsa core with sections glued and a pine center, 45° Kevlar wrap
4) Column made by Dave
5) $1 / 8^{\prime \prime}$ twist over $28^{\prime \prime}$ length

$W t=273.2 \mathrm{gm}=0.60 \mathrm{lbs}$

FIGURE 45 - LOAD VERSUS DEFLECTION GRAPH OF THE TABLE 16 DATA

TABLE 17
LOAD-STRAIN DATA FOR A SQUARE CROSS SECTION CAPTIVE COLUMN WITH $1 / 8$ INCH DIAMETER STEEL CAPS; $3 / 16$ INCH ACRYLIC CORE; AND 45°, . 0078 INCH DIAMETER, 20 DENSITY KEVLAR WRAP

Case	Deflection $\left(10^{-3} \mathrm{inch}\right)$	Load (Lbs)	$\begin{gathered} \varepsilon \\ \left(10^{-6} \mathrm{in} / \mathrm{in}\right) \end{gathered}$	$\begin{gathered} \varepsilon_{2} \\ \left(10^{-6} \mathrm{in} / \mathrm{in}\right) \end{gathered}$	$\begin{gathered} \varepsilon_{3} \\ \left(10^{-6} \mathrm{in} / \mathrm{in}\right) \end{gathered}$
1	25	10	-66	35	30
	50	30	-145	83	78
	75	51	-221	127	125
	100	76	-309	174	176
	125	104	-405	235	241
2	25	20	-52	-2	10
	50	43	-116	-1	26
	75	64	-188	1	49
	100	88	-264	2	80
	125	113	-356	6	113
3	25	17	33	-34	-18
	50	27	73	-73	-46
	75	46	141	-125	-95
	100	72	216	-172	-141
	125	94	299	-226	-201
4	25	15	48	-8	-21
	50	30	157	-14	-83
	75	50	262	-19	-142
	100	74	361	-28	-191
	125	102	468	-38	-246
5	25	15	-43	30	22
	50	35	-129	89	77
	75	58	-210	138	127
	100	87	-299	190	183
	125	115	-394	243	243
6	25	22	79	-7	-42
	50	45	184	-16	-96
	75	72	278	-26	-140
	100	96	375	-33	-192
7	25	22	31	-28	-19
	50	46	105	-84	-72
	75	69	172	-126	-118
	100	94	239	-171	-164

TABLE 17, Cont.

Case	Deflection $\left(10^{-3} \text { inch }\right)$	$\begin{aligned} & \text { Load } \\ & \text { (Lbs) } \end{aligned}$	$\begin{gathered} \varepsilon \\ \left(10^{-6} \mathrm{in} / \mathrm{in}\right) \end{gathered}$	$\begin{gathered} \varepsilon_{2} \\ \left(10^{-6} \mathrm{in} / \mathrm{in}\right) \end{gathered}$	$\begin{gathered} \varepsilon_{3} \\ \left(10^{-6} \mathrm{in} / \mathrm{in}\right) \end{gathered}$
8	25	14	-45	7	10
	50	31	-116	11	29
	75	52	-175	14	47
	100	78	-246	17	74
	125	108	-338	21	113

Notes: 1) Load applied with square harness
2) Dillon machine with 500 1b scale
3) $1 / 8^{\prime \prime}$ stee 1 caps, $3 / 16^{\prime \prime}$ acrylite core with solvent cement, 3M-1838 B/A for caps force, 45° Kev1ar wrap
4) Core made by Mike, caps and wrap by Steve and Dave
5) Slight twist present (1/16" over 31 " length)

$$
W t=564.8
$$

TABLE 18

LOAD-STRAIN DATA FOR A SQUARE CROSS SECTION CAPTIVE COLUMN WITH 1/8 INCH DIAMETER FIBERGLASS CAPS; 3/16 INCH ACRYLIC CORE; AND 45°, . 0078 INCH DIAMETER, 20 DENSITY KEVLAR WRAP

Case	$\begin{aligned} & \text { Deflection } \\ & \left(10^{-3} \text { inch }\right) \end{aligned}$	$\begin{aligned} & \text { Load } \\ & \text { (Lbs) } \end{aligned}$	$\begin{gathered} \varepsilon \\ \left(10^{-6} \mathrm{in} / \mathrm{in}\right) \end{gathered}$	$\begin{gathered} \varepsilon_{2} \\ \left(10^{-6} \mathrm{in} / \mathrm{in}\right) \end{gathered}$	$\begin{gathered} \varepsilon_{3} \\ \left(10^{-6} \mathrm{in} / \mathrm{in}\right) \end{gathered}$
1	50	16	-88	116	8
	100	30	-174	238	37
	150	48	-268	377	66
	200	66	-367	507	91
	250	86	-461	636	126
	275	93	-508	701	145
2	50	12	-89	0	-24
	100	22	-185	1	-37
	150	40	-298	6	-43
	200	56	-412	9	-51
	250	80	-533	16	-43
	300	95	-661	26	-45
3	50	9	97	-100	-33
	100	26	197	-211	-80
	150	44	288	-321	-108
	200	62	377	-438	-131
	250	82	467	-547	-155
	300	99	552	-663	-182
4	50	13	87	-13	1
	100	24	203	-40	-11
	150	38	333	-62	-27
	200	54	453	-84	-37
	250	76	574	-98	-45
	300	93	695	-121	-60
5	50	12	-71	109	5
	100	24	-154	251	24
	150	39	-241	376	49
	200	60	-346	514	79
	250	78	-449	648	107
	300	96	-551	786	142

TABLE 18, Cont.

Case	Deflection $\left(10^{-3} \mathrm{inch}\right)$	Load (Lbs)	$\begin{gathered} \varepsilon \\ \left(10^{-6} \mathrm{in} / \mathrm{in}\right) \end{gathered}$	$\begin{gathered} \varepsilon_{2} \\ \left(10^{-6} \mathrm{in} / \mathrm{in}\right) \end{gathered}$	$\begin{gathered} \varepsilon_{3} \\ \left(10^{-6} \mathrm{in} / \mathrm{in}\right) \end{gathered}$
6	50	14	128	-18	-2
	100	28	259	-19	-19
	150	44	399	-41	-35
	200	58	533	-51	-52
	250	74	670	-76	-73
	300	91	810	-102	-83
7	50	12	98	-117	-40
	100	23	208	-241	-83
	150	42	313	-357	-121
	200	54	406	-475	-169
	250	74	499	-593	-189
	300	92	588	-711	-219
8	50	15	-68	2	-28
	100	26	-173	16	-54
	150	42	-280	30	-70
	200	59	-395	41	-77
	250	80	-510	57	-78
	300	96	-634	72	-87

Notes: 1) Load applied with square harness
2) Dillon machine with 500 1b scale
3) $1 / 8^{\prime \prime}$ fiberglass caps, $3 / 16^{\prime \prime}$ acrylite core with solvent cement,

3M-1838 B/A for caps to core, 45° Kevlar wrap
4) Core made by Mike, caps and wrap by Steve and Dave
5) No twist in the column

$W t=437.1 \mathrm{gms}$

APPENDIX C

TRIANGULAR CROSS SECTION FINITE ELEMENT COMPUTER PROGRAM

C C NTR DLI I N F DRMA T I C N
NUMEER DF NODAL PCINTS $=61$ NUMBEF OF ELEMENT IYPES NUMEER CF LCAD CASES NUMEER CF FREGUENCIES ANALYSIS CODE (NDYA) EQ.O. STATIC
EQ.1, MODAL EXTFACTIDN
EQ.2. FQFCED RESFONSE
EG.3, RESPGNSE SPECTRUM
EQ.4, DIRECT INTEGRATIDN
SOLUTICN MODE (MODEX) =
EQ.O. EXECUTION
EQ•1. DATA CHECK
NUMEER OF SUESFACE
ITERATICN VECTORS (NAD) = EQUATICNS PER ELCCK TAPE10 SAVE FLAG (N1OSV) =

NODAL PCINT INPUT DATA

NODE NUMEER	$\underset{X}{\text { BCLNDARY }} \underset{Y}{ }$	$\underset{Z}{\text { CONDITIICN }}$	$\operatorname{codes}_{\mathbf{Y}}$	Z2	NOCAL	FOINT	COORD $\underset{\gamma}{ }$ NATES	Z		T
1	01	00	0	0	C. 0		0.0	$0 \cdot 0$	0	0.0
5	00	0 C	0	0	0.0		0.0	2.000	0	0.0
29	00	10	0	0	C. 0		0.0	14.000	4	0.0
33	$0 \quad 0$	00	0	0	C. C		$0 \cdot 0$	16.000	0	0.0
57	$0 \quad 1$	00	0	0	C. C		0.0	28.000	4	0.0
2	$0 \quad 0$	$0 \quad 0$	0	0	C.9.38		1.624	0.0	0	$0 \cdot 0$
30	10	10	0	0	C. 538		1.624	14.000	4	0.0
34	00	0 C	0	0	0.938		1.624	16.000	0	$0 \cdot 0$
58	$0 \quad 0$	C 0	0	0	C.938		1. 624	28.000	4	0.0
3	01	00	0	0	1.875		0.0	$0 \cdot 0$	0	$0 \cdot 0$
7	$0 \quad 0$	0 C	0	0	1.875		0.0	2.000	0	$0 \cdot 0$
31	00	10	0	0	1.875		$0 \cdot 0$	14.000	4	0.0
35	00	00	0	0	1.E75		$0 \cdot 0$	16.000	0	$0 \cdot 0$
59	$0 \quad 1$	00	0	0	1. 875		0.0	28.000	4	0.0
4	00	$0 \quad 0$	0	0	0.938		0.541	0.0	0	0.0
32	10	10	0	0	C.538		0.541	14.000	4	0.0
36	$0 \quad 0$	0 O	0	0	0.538		0.541	16.000	0	$0 \cdot 0$
60	00	0 C	0	0	C.938		0.541	28.000	4	$0 \cdot 0$
61	11	11	1	1	C.938		0.541	30.000	0	0.0

GENERATED NCDAL DATA

NODE NUMBER	$\underset{X}{\text { ECUNDARY }}$	$\operatorname{CONDIT}_{Z} \mathrm{I}_{x} \mathrm{CN}$	$\text { CODES }_{Y}$	ZZ	ACDAL	PGINT	COCRDINATES	Z	
1	$0 \quad 1$	00	0	0	0.0		$0 \cdot 0$	$0 \cdot 0$	0.0
2	00	00	0	0	C.938		1.624	0.0	$0 \cdot 0$
3	$0 \quad 1$	00	0	0	1.875		0.0	0.0	0.0
4	$0 \quad 0$	0 O	0	0	C.938		0.541	0.0	0.0
5	00	$0 \quad 0$	0	0	C. 0		0.0	2.000	0.0
6	00	00	0	0	0.938		1.624	2.000	$0 \cdot 0$
7	00	0 O	0	0	1.875		0.0	2.000	0.0
8	$0 \quad 0$	$0 \quad 0$	0	0	C.938		0.541	2.000	0.0
9	$0 \quad 0$	$0 \quad 0$	0	0	C, O		0 - 0	4.000	C. 0
10	00	0 O	0	0	C.938		1.624	4.000	$0 \cdot 0$
11	$0 \quad 0$	00	0	0	1.675		0.0	4.000	0.0
12	$0 \quad 0$	00	0	0	C.S3		$0 \cdot 541$	4.000	C. 0
13	00	$0 \quad 0$	0	0	0.0		$0 \cdot 0$	6. 000	0.0
14	$0 \quad 0$	00	0	0	C. 938		1. 624	6.000	0.0
15	$0 \quad 0$	00	0	0	1. 875		0.0	6.000	C. 0
16	$0 \quad 0$	0 O	0	0	0.938		0.541	6.000	$0 \cdot 0$
17	$0 \quad 0$	$0 \quad 0$	0	0	0.0		0 - 0	8.000	0.0
18	$0 \quad 0$	$0 \quad 0$	0	0	C. 538		1.624	8.000	0.0
19	$0 \quad 0$	00	0	0	1.875		0.0	8. 000	0.0
20	00	00	0	0	C.938		0.541	8.000	$0 \cdot 0$
21	$0 \quad 0$	0 0	0	0	0.0		0.0	10.000	0.0
22	$0 \quad 0$	0 O	0	0	0.938		1.624	10.000	0.0
23	$0 \quad 0$	$0 \quad 0$	0	0	1.875		0.0	10.000	0.0
24	00	$0 \quad 0$	0	0	0.538		0.541	10.000	$0 \cdot 0$
25	$0 \quad 0$	0 C	0	0	$0 \cdot 0$		0.0	12.000	0.0
26	$0 \quad 0$	$0 \quad 0$	0	0	C.938		1.624	12.000	0.0
27	$0 \quad 0$	$0 \quad 0$	0	0	1.ع75		0.0	12.000	0.0
28	$0 \quad 0$	0 O	0	0	C. 538		0.541	12.000	0.0
29	$0 \quad 0$	10	0	0	C. 0		0 - 0	14.000	0.0
30	10	10	0	0	C. 938		1.624	14.000	0.0
31	$0 \quad 0$	10	0	0	1.875		$0 \cdot 0$	14.000	C. 0
32	10	10	0	0	C.938		0.541	14.000	O. 0
33	$0 \quad 0$	$0 \quad 0$	0	0	C. 0		0.0	16.000	0.0
34	00	$0 \quad 0$	0	0	C.938		1.624	16.000	0.0
35	00	$0 \quad$ C	0	0	1.875		0 -0	16.000	0 - 0
36	00	0 C	0	0	0.938		0.541	16.000	0.0
37	00	00	0	0	C. 0		$0 \cdot 0$	18.000	C. 0
38	00	$0 \quad 0$	0	0	C.938		1.624	18.000	0.0
39	0	0	0	0	1. 275		$0 \cdot 0$	18.000	$0 \cdot 0$
40	00	$0 \quad 0$	0	0	C.938		0.541	18.000	0.0

100000000000000000000

ーOHOMOOOOOOOOOOOOOOOO

上OOOOOOOOOOOOOOOOOOOO

000 OOOOmOONOOONOO

WNNNNNNNNNNNNNNNNNNN O O OCOOGOOAFAFNNNNOOOO
 000000000000000000000 000000000000000000000

$\omega \neq O \omega N \omega+0 \omega N \omega+O \omega N \omega M \omega+00$

M + (UNSNSNNSN(VNNMMMMM M M M M


```
NUMBER CF EEAMS NGMOM
MATERIAL FRCPERTIES
\begin{tabular}{rr} 
MATEFIAL & YOUNG*S \\
NUMEER & MODULUS \\
1 & 0.6000007
\end{tabular}
POISSCN*S
RATIC
0.3000
MASS
DENSITY DENSITY
0.3000
0.0
0.0
BEAM GECNETRIC FFCFERTIES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SECTICN NUMEER & AXIAL & AREA A (1) & SHEAR & AREA A(2) & SHEAR & \begin{tabular}{l}
AREA \\
A ( 3\()\)
\end{tabular} & TORSION J(1) & INERTIA I(2) & INERTIA I (3) \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
ELEMENT LOAD MULTIflifers
\begin{tabular}{lll}
\(X-D I R\) & 0.0 & 0.0 \\
\(Y=D I R\) & 0.0 & 0.0 \\
\(Z-D I R\) & 0.0 & 0.0
\end{tabular}
```

.
$\begin{array}{ll}0.0 \\ 0 & 0 \\ 0 & 0\end{array}$

```
c
D
0.0
0.0
0.0
```

$\begin{aligned} & 0 \\ & 14 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
$\sum_{i j}^{0 m}$	
๓0 \square	
\sum_{u}^{0}	
${\underset{\sim}{\underset{u}{2}}}_{\infty}^{\infty}$	
$\underset{山}{\omega}$	
$\begin{aligned} & 4 x \\ & 0 \\ & 2 \\ & 2 \end{aligned}$	
$\begin{aligned} & w \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	
$\begin{aligned} & \text { wn } \\ & 01 \\ & 0 \\ & \angle \end{aligned}$	

PLANE STRESS ANALYSIS
MENBRANE ELEMENTS
INCOMPATIELE MDDES SUPPRESSED
$\begin{array}{lll}\text { NUNBER CF ELEMENTS } & = & 42 \\ \text { NUMBER CF MATERIALS } & = & 1\end{array}$
MAXIMUM TEMPERATURES
PER MATERIAL
ANALYSIS CODE
CODE FCF INCLUSICN
OF BENDING MCDES
$=2$

EQENDING MCDES
EQ.O. INCLUDE
GT.Q, SUPPRESS

MATERIAL I.D. NUMEER \qquad
NUMEER CF TENPERATURES WEIGHT DENSITY
MASS ENSITY

1
0.0

EETA ANGLE $\begin{array}{ll} & = \\ & =0.0\end{array}$


```
ALPHA(N) \(0.18000050 .10000-03\)

ELEMENT LGAD MULTIPLIERS
\begin{tabular}{cccccc} 
LOAD CASE TEMPERATURE & PRESSURE & \(X-G R A V I T Y\) & \(Y-G R A V I T Y ~ Z-G R A V I T Y ~\) \\
A & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
B & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
D & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
D & 0.0 & 0.0 & 0.0 & 0.0 & 0.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { ELEMENT } \\
\text { NUMEER }
\end{gathered}
\] & I & \(\checkmark\) & K & \(L\) & \[
\begin{aligned}
& \text { MATL } \\
& \text { TYFE }
\end{aligned}
\] & FEFERENCE TENPERATURE & I-J FACE FRESSURE & STRESS CPTION & KG & THICKNESS \\
\hline 1 & 4 & \(\varepsilon\) & 5 & 1 & 1 & \(0 \cdot 0\) & 0.0 & 4 & 1 & 0.1875 \\
\hline 2 & \(\varepsilon\) & 12 & 9 & 5 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 3 & 12 & 16 & 13 & 9 & 1 & 0 -0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 4 & 16 & 20 & 17 & 13 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 5 & 20 & 24 & 21 & 17 & 1 & \(\mathrm{C} \cdot \mathrm{O}\) & \(0 \cdot 0\) & 4 & 4 & 0.1875 \\
\hline 6 & 24 & 28 & 25 & 21 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 7 & \(2 \varepsilon\) & 32 & 29 & 25 & 1 & \(0 \cdot 0\) & 0.0 & 4 & 4 & 0.1875 \\
\hline 8 & 32 & 36 & 33 & 29 & 1 & \(0 \cdot \mathrm{C}\) & 0.0 & 4 & 4 & 0.1875 \\
\hline 9 & 36 & 40 & 37 & 33 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 10 & 40 & 44 & 41 & 37 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 11 & 44 & 48 & 45 & 41 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 12 & \(4 \varepsilon\) & 52 & 49 & 45 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 13 & 52 & 56 & 53 & 49 & 1 & \(0 \cdot 0\) & 0.0 & 4 & 4 & 0.1875 \\
\hline 14 & 56 & 60 & 57 & 53 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 15 & 4 & 8 & 6 & 2 & 1 & \(0 \cdot 0\) & 0.0 & 4 & 1 & 0.1875 \\
\hline 16 & \(\varepsilon\) & 12 & 10 & 6 & 1 & 0.0 & \(0 \cdot 0\) & 4 & 4 & 0.1875 \\
\hline 17 & 12 & 16 & 14 & 10 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 18 & 16 & 20 & 18 & 14 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 19 & 20 & 24 & 22 & 18 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 20 & 24 & 28 & 26 & 22 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 21 & 28 & 32 & 30 & 26 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 22 & 32 & 36 & 34 & 30 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 23 & 36 & 40 & 38 & 34 & 1 & O.C & 0.0 & 4 & 4 & 0.1875 \\
\hline 24 & 40 & 44 & 42 & 38 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 25 & 44 & 48 & 46 & 42 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 26 & 48 & 52 & E0 & 46 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 27 & 52 & 56 & 54 & 50 & 1 & 0.0 & C. 0 & 4 & 4 & 0.1875 \\
\hline 28 & 56 & 60 & 58 & 54 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 29 & 4 & \(\varepsilon\) & 7 & 3 & 1 & 0.0 & 0.0 & 4 & 1 & 0.1875 \\
\hline 30 & 8 & 12 & 11 & 7 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 31 & 12 & 16 & 15 & 11 & 1 & 0.0 & \(0 \cdot 0\) & 4 & 4 & 0.1875 \\
\hline 32 & 16 & 20 & 19 & 15 & 1 & 0.0 & \(0 \cdot 0\) & 4 & 4 & 0.1875 \\
\hline 33 & 20 & 24 & 23 & 19 & 1 & 0.0 & \(0 \cdot 0\) & 4 & 4 & 0.1875 \\
\hline 34 & 24 & 28 & 27 & 23 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 35 & 28 & 32 & 31 & 27 & 1 & C. 0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 36 & 32 & 36 & 35 & 31 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 37 & 36 & 40 & 39 & 35 & 1 & \(\mathrm{C} \cdot \mathrm{O}\) & C. 0 & 4 & 4 & 0.1875 \\
\hline 38 & 40 & 44 & 43 & 39 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 39 & 44 & 48 & 47 & 43 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 40 & 48 & 52 & 51 & 47 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline 41 & 52 & 56 & 55 & 51 & 1 & 0.0 & 0.0 & 4 & 4 & \[
0.1875
\] \\
\hline 42 & 56 & 60 & 59 & 55 & 1 & 0.0 & 0.0 & 4 & 4 & 0.1875 \\
\hline
\end{tabular}
NUMEER CF BEAMS \(\quad=\quad 45\)
\(\begin{array}{llll}\text { NUMBER CF GEOMETRIC PRCFERTY } \\ \text { NUMBER CF FIXED END FCFCE SETS } & = & 1 \\ \text { NUMBER CF MATERIALS } & \end{array}\)
MATERIAL FRCPERTIES
\begin{tabular}{rr} 
MATERIAL & YCUNG*S \\
NUNEER & MCDULUS \\
&
\end{tabular}

> PCISSCN*S FATIC

MASS
DENSITY
WEIGHT DENSITY
0.3000
0.0
\(0 \cdot 0\)

EEAM GECNETRIC PRCPERTIES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SECTICN NUMEER & AXIAL & \begin{tabular}{l}
AREA \\
A(1)
\end{tabular} & SHEAR & AREA
\[
A(2)
\] & SHEAR & AFEA A (3) & \[
\begin{gathered}
\text { TCFSIUN } \\
\text { J(1) }
\end{gathered}
\] & I NERTIA I(2) & \[
\begin{array}{r}
\text { INERIIA } \\
\text { I( } 3 \text { ) }
\end{array}
\] \\
\hline 1 & \(0 \cdot 352\) & D-C1 & \(0 \cdot 0\) & & 0.0 & & \(0.20600-03\) & \(0.10300-03\) & \(0.10300-03\) \\
\hline
\end{tabular}

ELEMENT LCAD MULTIFLIEFS
\(x-D\) IR
\(Y-D I R\)
Z-DIR
0.0
\(0 \cdot 0\)
0.0

A
\(\begin{array}{ll}0.0 \\ 0 & 0 \\ 0 & 0\end{array}\)
0.0
C .0

旦
\begin{tabular}{lll}
0.0 & \(C\) & 0.0 \\
0.0 & & 0.0 \\
0.0 & & 0.0
\end{tabular}

D
0.
0.0




\footnotetext{


}












TCTAL NUMEER OF EQUATIONS \(=350\) EANDWIDTH
NUMEER OF EGUATICNS IN A BLOCK NUMEER OF ELOCKS


APPENDIX D
SQUARE CROSS SECTION FINITE ELEMENT COMPUTER PROGRAM
\begin{tabular}{lll} 
NUMEER CF NOCAL FCINTS & \(=106\) \\
NUNBER CF ELENENT TYFES & \(=104\) \\
NUMEEF CF LOAD CASES & \(=\) \\
NUNBER CF FREGUENCIES & \(=1\) \\
ANALYSIS CDDE (NDYN) & \(=\) & 0 \\
\end{tabular}

> EG.C. STATIC

EG. M, MCDAL EXTFACTICN
EQ:,\(~ M C D A L ~ E X T F A C T I C N ~\)
\(E Q .2\),
FCRCED RESFCNSE
EQ. \(\because\), RESPONSE SPECTRUM
EQ. 4 , DIRECT INTEGRATICN
SCLUTICN MODE (MCDEX) = EQ.C. EXECUTICN
EG•1, DATA CHECK
NUNEER CF SUESPACE
ITERATICN VECTCRS (NAD) \(=0\)
EGUATICNS PER ELOCK =
TAPEIO SAVE FLAG (N1OSV) =

NODAL FCINT INPUT DATA
\begin{tabular}{rcccccc} 
NODE & ECUNDARY & CONDITICN \\
NUNBER & X CODES & \\
1 & 0 & 1 & \(Z\) & XX & YY & ZZ \\
6 & 0 & 0 & 0 & 0 & 0 & 0 \\
51 & \(C\) & 0 & 1 & \(C\) & 0 & 0 \\
56 & 0 & 0 & 0 & 0 & 0 & 0 \\
101 & 0 & 1 & 0 & \(C\) & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 \\
52 & 1 & 0 & 1 & 0 & 0 & 0 \\
57 & 0 & 0 & 0 & \(C\) & 0 & 0 \\
102 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 & 0 \\
53 & 1 & 0 & 1 & 0 & 0 & 0 \\
58 & 0 & 0 & 0 & 0 & 0 & 0 \\
103 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 1 & 0 & 0 & 0 & 0 \\
9 & 0 & 0 & 0 & \(C\) & 0 & 0 \\
54 & 0 & 0 & 1 & 0 & 0 & 0 \\
59 & 0 & 0 & 0 & 0 & 0 & 0 \\
104 & 0 & 1 & \(C\) & \(C\) & 0 & 0 \\
5 & 0 & 0 & 0 & 0 & 0 & 0 \\
55 & 0 & 0 & 1 & 0 & 0 & 0 \\
60 & 0 & 0 & 0 & \(C\) & 0 & 0 \\
105 & 0 & 0 & 0 & \(C\) & 0 & 0 \\
106 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}

GENERATED NCDAL DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
NODE \\
NUMEER
\end{tabular} & \[
\underset{\mathrm{X}}{\mathrm{ECUNDARY}} \mathrm{Y}
\] & \[
\underset{Z}{\operatorname{CONDIT}} \underset{X}{1} \mathrm{I}_{X} \mathrm{CN}
\] & \[
\operatorname{CODES}_{Y}
\] & 22 & \[
\operatorname{ACDAL}_{X}
\] & PCINT & cocrdinates & Z & \\
\hline 1 & 01 & \(0 \quad 0\) & 0 & 0 & C.C & & 0.0 & 0.0 & 0.0 \\
\hline 2 & 00 & 0 C & 0 & 0 & C. C & & 1.325 & 0.0 & 0.0 \\
\hline 3 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & 1. 225 & & 1.325 & 0.0 & 0.0 \\
\hline 4 & 01 & 0 C & 0 & 0 & 1.325 & & 0.0 & 0.0 & C. 0 \\
\hline 5 & 00 & 0 c & 0 & 0 & C. 663 & & \(0.6 \in 3\) & 0.0 & 0.0 \\
\hline 6 & \(0 \quad 0\) & 00 & 0 & 0 & C. \({ }^{\text {c }}\) & & 0.0 & 1.400 & C. 0 \\
\hline 7 & C 0 & \(0 \quad 0\) & 0 & 0 & 0.0 & & 1.325 & 1.400 & 0.0 \\
\hline 8 & 00 & c C & 0 & 0 & 1. \(\overline{\text { 2 }} 5\) & & 1.325 & 1.400 & 0.0 \\
\hline 9 & \(0 \quad 0\) & c C & 0 & 0 & 1.325 & & 0.0 & 1.400 & 0.0 \\
\hline 10 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & 0.663 & & \(0.6 \in 3\) & 1.400 & C. 0 \\
\hline 11 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & C. C & & 0.0 & 2.800 & 0.0 \\
\hline 12 & 00 & \(0 \quad 0\) & 0 & 0 & C. C & & 1.325 & 2.800 & C. 0 \\
\hline 13 & c 0 & 0 c & 0 & 0 & \(1 . ミ 25\) & & \(1 \cdot 325\) & 2. 800 & C. 0 \\
\hline 14 & C 0 & 0 C & 0 & 0 & 1.325 & & 0.0 & 2. 800 & 0.0 \\
\hline 15 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & C. 663 & & \(0.6 \in 3\) & 2. 800 & 0.0 \\
\hline 16 & \(0 \quad 0\) & 0 - & 0 & 0 & 0.0 & & 0.0 & 4.200 & 0.0 \\
\hline 17 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & C. C & & \(1 \cdot 325\) & 4.200 & 0.0 \\
\hline 18 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & 1. 225 & & \(1 \cdot 325\) & 4.200 & 0.0 \\
\hline 19 & \(0 \quad 0\) & 00 & 0 & 0 & 1.325 & & \(0 \cdot 0\) & 4.200 & 0.0 \\
\hline 20 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & c. 663 & & 0.663 & 4.200 & 0.0 \\
\hline 21 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & \(C \cdot 0\) & & 0.0 & 5.600 & 0.0 \\
\hline 22 & \(0 \quad 0\) & 00 & 0 & 0 & C. C & & 1.325 & 5.600 & 0.0 \\
\hline 23 & \(0 \quad 0\) & \(0 \quad 1\) & 0 & 0 & 1.325 & & 1.325 & 5.600 & C. 0 \\
\hline 24 & 00 & \(0 \quad 0\) & 0 & 0 & 1.325 & & 0.0 & 5.600 & 0.0 \\
\hline 25 & \(0 \quad 0\) & 00 & 0 & 0 & C.tec & & 0.663 & 5.600 & \(0 \cdot 0\) \\
\hline 26 & \(0 \quad 0\) & \(0 \quad \mathrm{C}\) & 0 & 0 & 0.0 & & C. 0 & 7.000 & \(0 \cdot 0\) \\
\hline 27 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & c & C. \({ }^{\text {c }}\) & & 1.325 & 7.000 & 0.0 \\
\hline 28 & c 0 & \(0 \quad 0\) & 0 & 0 & 1.325 & & 1.325 & 7.000 & 0.0 \\
\hline 29 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & 1.325 & & 0.0 & 7.000 & \(0 \cdot 0\) \\
\hline 30 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & C. \(6 \in 3\) & & \(0.6 \in 3\) & 7.000 & 0.0 \\
\hline 31 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & C. 0 & & 0.0 & 8.400 & 0.0 \\
\hline 32 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & 0.0 & & 1.325 & 8.400 & C. 0 \\
\hline 33 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & 1.325 & & 1.325 & 8.400 & 0.0 \\
\hline 34 & \(0 \quad 0\) & \(0 \quad \mathrm{C}\) & 0 & 0 & 1.325 & & \(0 \cdot 0\) & 8.400 & 0.0 \\
\hline 35 & \(0 \quad 0\) & \(0 \quad \mathrm{C}\) & 0 & 0 & 0.663 & & 0.663 & 8.400 & 0.0 \\
\hline 36 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & C. C & & \(0 \cdot 0\) & 9.800 & 0.0 \\
\hline 37 & \(0 \quad 0\) & 0 C & 0 & 0 & C.C & & 1.325 & 9.800 & \(0 \cdot 0\) \\
\hline 38 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & 1. 225 & & 1.325 & ¢. 800 & C. 0 \\
\hline 39 & \(0 \quad 0\) & \(0 \quad 0\) & 0 & 0 & 1.325 & & 0.0 & 9.800 & 0.0 \\
\hline 40 & 00 & 0 C & 0 & 0 & C.663 & * & 0.663 & 9.800 & 0.0 \\
\hline
\end{tabular}



OOOOOOOOOOODOOOOOOOOOOOOOOOOOHFOOOOOOOOOOO

000000000000000000000000000000000000000000

OOOOOOOOOOOOOQOOOQOOOOOOOOOHFHFHOOOOOOOOOO


000000000000000000000000000000000000000000

OOCOOOOOOOOOOOOOODOOODOODOOOOOODOOODOOOOOO








 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000




1000000000000000000000000


000000000000000000000000






00000000000000000000000 m

00000000000000000000000 m

00000000000000000000000 m

00000000000000000000000 m

000000000000000000 HOOmom

00000000000000000000000 m
 \(\omega \omega \omega \omega \omega \omega \omega \boldsymbol{\omega} \boldsymbol{\omega}\)



\section*{}














 OCNNVIOOACNOOOAONOOOCNO


```

 NUMBER CF BEAMS
 NUMBER CF GEQMETRIC PRCPERTY SETS= l
 NUMEER CF NATERIALS = 1
 MATERIAL FFCPERTIES

MATEFIAL	YCUNG*S
NUNEER	MCDULUS
1	$C .3 O C C D ~$

```
PCISSCN*S RATIC
MASS DENSITY C. \(3000 \quad 0.0\)
``` WEIGHT 0.0
BEAM GECMETRIC PROPERTIES AXIAL AREA \(10.1230 D-C 1\)
```



```
INERTIA
I(2)
\(0.12000-04\)
```

[^0]
C
0.0
0.0

 0000000000000000000000000000000000000000







[^1]

 $\omega \Delta \backsim \oplus$ の


 0000000000000000000000000000000000000000


0000000000000000000000000000000000000000


0000000000000000000000000000000000000000

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOO

0000000000000000000000000000000000000000

0000000000000000000000000000000000000000 S

```
NUMBER CF 日EAMS \(=84\)
NUMBER CF GEGMETRIC PRCPERTY SETS
NUMEER CF FIXED END FCRCE SETS \(=0\)
```

MATEFIAL FRCPERTIES

MATEFIAL	YOUNG*S
NUMEER	MCCULUS

POISSCN*S
RATIC
$0 . \overline{3} 000$

MASS DENSITY

WEIGHT DENSITY
0.0

BEAM GECNETFIC PFCPERTIES

SECTICN NLMEER	AXIAL	$\begin{aligned} & \text { AREA } \\ & \text { A (1) } \end{aligned}$	SHEAR	$\begin{aligned} & A R E A \\ & A(2) \end{aligned}$	SHEAF	AFEA $A(3)$	$\begin{gathered} \text { TORSION } \\ \text { J (1) } \end{gathered}$	$\begin{array}{r} \text { INERTIA } \\ \text { I(2) } \end{array}$	INERTIA I (3)
1	$0 \cdot 352$	D-01	0.0		0.1		$0.20600-03$	$0.10300-03$	$0.10300-03$


ELEMENT	LOAD MULTIPLIEFS		
X-DIR	0.0	A	
$Y$ Y-DIR	0.0	0.0	

$E$
$\mathrm{O} \cdot \mathrm{O}$
$\mathrm{C} \cdot \mathrm{O}$
0.0 C. 0


# 约 $\varnothing$ ( 












PLANE STRESS ANALYSIS
MENBRANE ELEMENTS
INCONFATIELE MDDES SUPFRESSED


MATERIAL	- 1・ロ・NUMECR	$=$	1
NUNEER	CF TENPEFATURES	=	1
WEIGHT	DENSITY	=	0.0
MASS	DENSITY	=	0.0
EETA AN	GLE	$=$	0.0


TEMPERATLRE	$E(N)$	E (S)	E(T)	NU (NS)	NU(NT)	NU (ST)
0.0	0.13400 CE	0.4000006	0.134 CD 05	0.3000	0.3000	$0.0400$


G(NS)	ALPHA(N)	ALPHA(S)	ALPHA(T)
$0.1800 D 05$	$0.1000 D-03$	$0.1000 D-03$	$0.1000 D-03$

ELEMENT LCAD MULTIPLIERS







LinsNrゥ

N)









46	30	35	33	28	1	$0 \cdot 0$	$0 \cdot 0$	4	5	0.1875
47	35	40	$3 \varepsilon$	33	1	$0 \cdot 0$	C. 0	4	5	0.1875
48	40	45	43	38	1	0.0	$0 \cdot 0$	4	5	0.1875
49	45	50	48	43	1	0.0	O.0	4	5	0.1875
50	50	55	53	48	1	0.0	0.0	4	5	0.1875
51	55	60	58	53	1	0.0	0.0	4	5	0.1875
52	60	65	63	58	1	0.0	0.0	4	5	0.1875
53	65	70	68	63	1	0.0	C-0	4	5	0.1875
54	70	75	73	68	1	C. 0	0.0	4	5	0.1875
55	75	E 0	78	73	1	0.0	0.0	4	5	0.1875
56	80	85	83	78	1	$0 \cdot 0$	0.0	4	5	0.1875
57	85	90	88	83	1	0.0	0.0	4	5	0.1875
58	90	95	93	$\varepsilon 8$	1	$0 \cdot 0$	0.0	4	5	0.1875
59	95	100	98	93	1	$0 \cdot 0$	0.0	4	5	0.1875
60	100	105	1 C 3	98	1	0.0	0.0	4	5	0.1875
61	5	10	9	4	1	0.0	0.0	4	1	0.1875
62	10	15	14	9	1	$0 \cdot 0$	$0 \cdot 0$	4	5	0.1875
63	15	20	15	14	1	0.0	0.0	4	5	0.1875
64	20	25	24	19	1	$0 \cdot 0$	0.0	4	5	0.1875
65	25	30	29	24	1	$0 \cdot 0$	0.0	4	5	$0 \cdot 1875$
66	30	35	34	29	1	0.0	$0 \cdot 0$	4	5	0.1875
67	35	40	39	34	1	0.0	$0 \cdot 0$	4	5	0.1875
68	40	45	44	39	1	$0 \cdot 0$	0.0	4	5	0.1875
69	45	50	45	44	1	0.0	0.0	4	5	0.1875
70	50	55	54	49	1	0.0	0.0	4	5	0.1875
71	55	60	59	54	1	0.0	$0 \cdot 0$	4	5	0.1875
72	60	65	64	59	1	$0 \cdot 0$	$0 \cdot 0$	4	5	0.1875
73	65	70	69	64	1	$0 \cdot 0$	0.0	4	5	0.1875
74	70	75	74	69	1	0.0	0.0	4	5	0.1875
75	75	80	79	74	1	$\mathrm{C} \cdot \mathrm{O}$	C. 0	4	5	C. 1875
76	80	$\varepsilon 5$	84	79	1	$0 \cdot 0$	0.0	4	5	0.1875
77	$\varepsilon 5$	90	E 9	84	1	$\mathrm{C} \cdot 0$	$0 \cdot 0$	4	5	0.1875
78	90	95	94	89	1	0.0	$0 \cdot 0$	4	5	0.1875
75	95	100	¢S	94	1	0.0	0.0	4	5	0.1875
$\varepsilon 0$	100	105	104	SS	1	$0 \cdot 0$	0.0	4	5	0.1875

```
NUNBER OF TRUSS MEMEERS= 160
NUNEEF CF DIFF. NENEEFS= 162
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TYPE & & \(E\) & & ALPHA & CEN & AREA & \\
\hline 1 & 0.18000000 & \(0 \varepsilon\) & C. C & & & 0.12300CCD-C2 & 0.0 \\
\hline 2 & 0.10000000 & C1 & C. C & & & \(0.12300000-02\) & 0.0 \\
\hline
\end{tabular}
ELEMENT LCAD MULTIFLIEFS
\begin{tabular}{lll}
X-DIR & 0.0 & 0.0 \\
Y-DIR & 0.0 & 0.0 \\
Z-DIR & 0.0 & 0.0 \\
TEMP & 0.0 & 0.0
\end{tabular}
E
\begin{tabular}{ll}
0.0 & 0.0 \\
\(C=0\) & 0.0 \\
\(C .0\) & 0.0 \\
\(C .0\) & 0.0
\end{tabular}
```










00000000000000000000000000000000000000000000000





$\cdots$－	
－ル	
000000000000000000000    000000000000000000000	

## EGUATICN PAAFAMETERS

TCTAL NUMEER OF EQUATIONS $=61 \mathrm{~S}$ EANDUIDTH $=5$ $\begin{aligned} \text { NUMBER CF EQUATIONS IN A ELOCK } & =59 \\ \text { NUMBEF OF ELOCKS } & =11\end{aligned}$

STFUCTURE LCAD CASE	LCAC	$\underset{C}{\text { MLLTIFLIEFS }}$
1	0.0	0.0

APPENDIX E
SAMPLE OUTPUT FROM FINITE ELEMENT COMPUTER PROGRAM


S-MAX	S-MIN	ANGLE
0.284960 Cl	-0.19149D 03	9.52
$S-M A X$	S-MIN	ANGLE
0.19168002	-0.83431D 02	26. 26
$S-M A X$	S-M IN	ANGLE
0.406180	-0.106390 03	31.61
S-MAX	S-MIN	ANGLE
0.774530 C	-0.10205D 03	40.68


	$\begin{array}{ll} 00 & 0550^{\circ} \mathrm{I} \\ 00 & 0 E 8 E \end{array}$		$\begin{array}{ll} 00 & 058+\circ \\ 00 & 0587 \bullet 2 \end{array}$	$\begin{aligned} & 10-0010^{\circ} 8- \\ & 10-00100^{\circ} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { 98E8•1 } \\ & \text { 08EB•1 } \end{aligned}$	$\mathbf{I}$	8
$\begin{aligned} & \text { TO-OELZ•E- } \\ & \text { IO- OL9E•Z- } \end{aligned}$	$\begin{aligned} & 00 \text { QERE* Z- } \\ & 00 \text { OLZ己* T } \end{aligned}$	$\begin{aligned} & 90-0 E 5^{\circ} \mathrm{L} \\ & 90-0 \varepsilon 55^{\circ} \mathrm{L} \end{aligned}$	$\begin{aligned} & 10-\text { aE } 9 z \cdot 3- \\ & 10-0 E 9 己 \cdot 8 \end{aligned}$	$\begin{aligned} & 10-05 \geq 0^{\circ} \quad 7 \\ & 10-0520^{\circ} \quad 6- \end{aligned}$	$\begin{aligned} & 20 \\ & \text { 20 } \end{aligned}$	$\begin{aligned} & 0067^{\circ}: I \\ & 006 t^{\circ} \cdot 1- \end{aligned}$	$\tau$	$L$
$\begin{aligned} & 10-029 E \cdot 2 \\ & 10-0 E E Z \cdot 5- \end{aligned}$		$\begin{aligned} & 90-0520 \cdot 8 \\ & 90-05 \geq 0 \cdot 8- \end{aligned}$	$\begin{array}{ll} 90 & 03 \angle 3^{\circ} \\ 00 & 03<8^{\circ} \\ 1-1 \end{array}$	$\begin{aligned} & 10-0+05^{\circ} \quad 7 \\ & 10-a+05^{\circ} \quad \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { OIBE: } \\ & \text { OIBE } \end{aligned}$	$\mathbf{I}$	9
$\begin{aligned} & \text { TO- -EEC•5 } \\ & \text { JO- } 1 \angle E \cdot 8- \end{aligned}$	$\begin{array}{ll} 00 & 0 \geq 00^{\circ} \\ 00 & 0125^{\circ} \\ 1- \end{array}$	$\begin{aligned} & 90-a E \nrightarrow 9^{\circ} \mathrm{T} \\ & 90-\mathrm{QE} 力 9^{\circ} \mathrm{I}- \end{aligned}$	$\begin{aligned} & 10-030<\varepsilon^{\circ}- \\ & 10-030<\cdot E \end{aligned}$	$\begin{aligned} & 10-0595: 5- \\ & 10-0595 \cdot \frac{3}{3} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 0<\angle I: 1 \\ & 0<2 T: I- \end{aligned}$	1	S
$\begin{aligned} & 20-a 1 \angle \angle \cdot 8 \\ & 10-050 己 \cdot \frac{8}{E} \end{aligned}$	$\begin{aligned} & 00 \text { aI26* } \\ & 10-055 T^{*}, ~ \end{aligned}$	$\begin{aligned} & 90-08 力 9^{\circ} \vdash- \\ & 90-08 \forall 9^{\circ} \forall \end{aligned}$	$\begin{array}{lll} 00 & 9733^{\circ} 1 \\ 00 & 0983 & 1 \end{array}$	$\begin{aligned} & 10-09155^{\circ}-2- \\ & 10-0915 \cdot z \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \angle ट T \cdot 5 \\ & 0 \angle 己 I \cdot 5- \end{aligned}$	T	$\dagger$
$\begin{aligned} & \text { T0-OSOZ*E- } \\ & \text { TO-0218*E } \end{aligned}$	$\begin{aligned} & 10-0 \operatorname{ST} 1^{\circ}: \frac{2}{1}- \\ & 10-0 力 00^{\circ} \end{aligned}$	$\begin{aligned} & 90-0 \tau \neq 0 \cdot 5- \\ & 90-0 \tau \vdash 0 \cdot 5 \end{aligned}$		$\begin{aligned} & \text { ZO-OZEE: } \\ & \text { ZO-OCEE } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		1	$\varepsilon$
$\begin{aligned} & 10-0518 \cdot E- \\ & 50-0850 \cdot \frac{1}{2}- \end{aligned}$	$\begin{aligned} & 10-01000^{\circ} \mathrm{I}- \\ & 00 \mathrm{OZ} 20^{\circ} \mathrm{E} \end{aligned}$	$\begin{aligned} & 90-0 カ \varepsilon I \cdot I- \\ & 90-0 \forall E I \cdot I \end{aligned}$	$\begin{array}{lll} 00 & 0 \angle B 0^{\circ} \cdot z \\ 0 & 0 \angle B 0^{\circ} & 2- \end{array}$	$\begin{aligned} & 10-0280: E \\ & 10-0280 \cdot E- \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & O E \ngtr 0 \cdot \varepsilon \\ & O \varepsilon \not D^{\circ} \cdot \varepsilon- \end{aligned}$	I	乙
$\begin{aligned} & 30-0820: 5 \\ & \angle 0-016<\cdot 5 \end{aligned}$	$\begin{aligned} & 00 \text { oze0: } \\ & 20-092 \varepsilon \\ & \hline 0- \end{aligned}$	$\begin{aligned} & 90-08 E E: E \\ & 90-08 E E \cdot E- \end{aligned}$	$\begin{array}{ll} 00 & 05 S I * z- \\ 0 & 05 S T \end{array}$	$\begin{aligned} & \text { 20-0159:E- } \\ & \text { 20-0155.E } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0088^{\circ} \mathrm{I}- \\ & 0088^{\circ} \mathrm{I} \end{aligned}$	$\tau$	I
$\begin{aligned} & \text { EN } \\ & 9 N I O N \exists G \end{aligned}$	$\begin{aligned} & 3 \mathrm{~N} \\ & 5 \mathrm{NIONB} \end{aligned}$	IW	$\begin{aligned} & \text { Ey } \\ & y \forall \exists H S \end{aligned}$	$\begin{aligned} & \text { टy } \\ & \forall \forall \exists \mathrm{H} 5 \end{aligned}$	TY		$\begin{aligned} & \text { ON } \\ & 0 \forall 0 ר \end{aligned}$	$\cdot$－N   W $\forall \exists 日$

## TRUSS NEMBER ACTICNS

MEMEER	LCAD	STRESS	FCFCE
1	1	-0.00453	-C.COO
2	1	-0.00187	-0.COC
3	1	-0.00225	-0.000
4	1	-0.00464	-C.COO
5	1	-0.00695	-0.c00
6	1	-C.C0638	$-0 . \operatorname{coc}$
7	1	-0.00371	-0.000
$\varepsilon$	1	-0.00235	-0.00C
9	1	-0.00294	-0.000
10	1	-0.00251	-0.000
11	1	11911.55987	14.651
12	1	16923.97245	20.E16
13	1	134¢1.75850	16.595

N C DE
NODE
NUNBER
106
105
104
103
102
101
100
99
98
97
96

DISFLACEMENTS，FGTATIONS

NODE
NUNBER 106

x－

1

TRANSLATICN 0.0
$-0 . \epsilon \varepsilon 1 \subseteq \epsilon C-C 2$ 0.0
$-0.84950 \mathrm{C}-02$
$-0.849500-02$ 0.0
$-0.204970-01$
$-0.21965 \mathrm{D}-01$
$-0.229 \varsigma \Xi \mathrm{C}-01$
$-0.229930-01$
-0.21 GESD－01
$-0.35358 \mathrm{c}-01$
$-0.362250-01$
 TFANSLATICN 0.00. $-0.526650-03-0.81517 \mathrm{D}-02$

0．44968D－02－0．1709EC－01
$-0.53964 D-02-0.10342 \mathrm{D}-01$
$-0.53964 \mathrm{D}-02 \quad-0.10342 \mathrm{D}-01$

0．449680－02－0．17098D－01
$-0.473800-03$
$0.456810-02-0.12873 \mathrm{D}-01$
$-0.525430-02$
$-0.525430-02$
-0.1 Cヨ7ミロー01
$0.456810-02-0.12873 \mathrm{D}-01$
$-0.29969 \mathrm{D}-03$
$0.445270-02-0.9034$ ED－02

ROTATIOA 0.0
$0.138930-15$
$0.66507 \mathrm{D}-02$
$-0.126780-02-0.293020-02$
$0.126780-020.29302 \mathrm{D}-02$
$-0.66507 D-02-0.664790-02$
$0.514660-16 \quad 0.78337 D-14$
$0.25644 \mathrm{D}-02 \quad 0.66479 \mathrm{D}-02$
$-0.55676 D-03-0.29302 D-02$
$0.55676 \mathrm{D}-03$
$-0.256440-02-0.664790-02$
$-0.271750-15$
$-0.21840 \mathrm{D}-02$
$0.293020-02$
ROTATION 0.0
$0.13067 D-13$
$0.66479 D-02$
$0.66479 D-02$
$0.945050-15$
$0.66479 \mathrm{D}-02$

COMMON STNF $(4,4)$ y $\operatorname{STNQ}(4,4)$ y STSF $(4,4)$ y $\operatorname{STSQ}(4,4)$ y PHT
(4,4) y $\operatorname{ASTN}(4,4,3)$
DTMENSTON SH(3)y SL(3) y STN(8,4y 3 ) ASTN2 (2,4, 3 )
10 10 I=1.8
WRITE ( $6, \mathrm{I}$ ) I

1. FOFMAT (/y, CASE 'y II)
$00 \quad 10 \quad J=1.4$ $\operatorname{LOAD=25*}=2$
WFTTE ( 6,3 ) LOAD
3 FORMAT ( ENTEF LOW ANO HTGH OATA FOR ', TB, POUNO F ORCE')
y 5 H (3)
1010 k゙=1. 10
 WRITE (6.22)
22 FORMAT ( $/ y / y$, ENTER MODULUS OF ELASTICTTY ANX FOTSON
9 FATTO')

4 FORMAT (/y/y/y/y, TNTERFOLATEO STRATN VAL..UES') [10 II T $=1.98$ WRTTE ( 6,5 ) I
5 FORMAT (/, CASE, yI, LOAO STRATN- I STRATN-2 STRATN-3')

0011 J=1. 4
$1 . \mathrm{AAX}=25 *, ~$

6 FORMAT ( $10 X, T 3,3 X, F 8.292 \times F 8.2 y 2 X y=8.2$ ) WRITE (6,7)
7 FORMAT $/ /, /, /$, AUERAGE STRATNS WTTH FRTNCTFAL STRAI NS AND STRESSES')

DO $12 \quad \mathrm{I}=\mathrm{I}, 4$
WRTTE ( 6.5 ) I

```
 WRTTE (6,23)
 10 17 I=1.2
 WRTTE (6,8) T
 00) 17 J=1.4
 LOAO=25*,
 00 18 k゙=1. %
```



```
CALL. STRESS(I,J,ELAS,FOT)
17 WRITE (6,9) LOADy STNF(IyJ)y STNQ(IgJ)y STSF(IyJ)y S
rSQ(I,y), PHI(T,J)
 STOF
 ENO
 SUBROUTTNE STRESS(T,J,ELAS,FOI)
 COMMON STNF(4,4),STNQ(4,4), STSF(4,4), STSQ(4,4), FH
II(4,4)% ASTN(4y4,3)
 A=2*ASTN(I,J,2)\cdotsASTN(I, J.I) --ASTN(I, J, 3)
 B=ASTN(I, Jy1) --ASTN(I,y,3)
 AB=SQRT (A**2+B**2)*0.5
 C=(ASTN(Iy,yy)+ASTN(Ty,Jy3))*0.S
 STNP(I,J)=C+AB
 STNQ(I,J)=C--AE
 ANG=ATAN2(AyB)*O.5
 FHT(I,J)=ANG*57.29558+45.0
 G=C/(INFOI)
 H=AB/(I+POI)
 STSF(I,J)=FELAS*(G+H)
 STSQ(Iy,J)=ELAS*(G...H)
 RETURN
 END
```

```
 T2=T*2
 I1=1.2--1
 10 12 J=1:4
 LOA0=25*.\
 10 1.3 K゙=1. y 3
13 ASTN(Ty, バ)==(STN(TI.Jッド)+STN(T2y」yド))/2
WRTTE (6,6) LOAX! ASTN(TyJyI), ASTN(Ty,y2), ASTN(Ty,
y3)
WRTTE (6,23)
23 FORMAT (',')
10 1.4 I.=1.4
WRITE: (6,8) I
8 FOFMAT (/y' CASE 'yII, LOAX STRAIN-FF STRAIN-WQ
STRESS-F.F STRESS--W ANGLE:N
00 1.4 J=1,4
CALL.. STRESS (I, J,EL..ASyFOT)
LOAM=25*, \
14 WFTTE (6y9) LOAÖ, STNF(I,J) y STNQ(IyJ), STGF(Iy,J), S
TSQ(I,J), FHT(I,J)
 FOFMAT (10X,T3,3XyF8.2y2X,F8.2y2XyF8.2y2X,F8.2y2XyF6
* 1.)
 WRTTE: (6,2J)
 21 FORMAT (/y/y/y, SECONX AUERAGTNG* STRATNS WTTH FRTNC
IFAL STRATNS ANM STRESSES')
00 15 T=1.22
WRTTE (6,5) I
T2=T*2
T1=12--1.
10 15 J=1. 1, 4
LOAg=25*,J
00 1.6 א゙=1.y3
16 ASTN2(TgJgK゙)=(ASTN(I2g.\gK)+ASTN(TIgJyk゙))/2
15 WRTTE (6y6) LOAD, ASTN2(TgJy1), ASTN2(IgJy2)y ASTN2(
T.g, y,3)
```


## REFERENCES

1. Ross, B.W., Barry, D.0., and Mierau, D., "Captive Column Crash Tests," FHWA Report No. RD-81/501, 1981.
2. Morrison Modled Fiberglass Company, "Glass Reinforced Structurals Engineering Manual," Technical Bulletin MMFG 1000, 1971.
3. Lanier, M., "Testing of Two Cap-Com Models Fabricated by the Captive Column Company," ABAM 70A 46, 1971.
4. Bosch, L.R., "Captive Column Structure," United States Patent Office Number 3,501,880, 1980.
5. Cernica, J.N., "Beams of Two Materials," Strength of Materials, 1st ed., Vol. 1, Holt Rindhart and Winston, New York, 1966, pp. 186-190.
6. Pilkey, 0.H., Pilkey, W.D., "Analysis of Stress and Strain," Mechanics of Solids, 1st ed., Vol. 1, Quantum Publishers, New York, 1974, pp. 174-190.
7. Bath, K., Wilson, E.L., and Peterson, F.E., "A Structural Analysis Program for Static and Dynamic Response of Linear Systems," EERC Report 73-11, 1973.
8. Cook, R.D., "Background and Introductory Material," Concepts and Applications of Finite Element Analysis, 1st ed., Vol. 1, John Wiley \& Sons, New York, 1974, pp. 1-22.
9. Bowes, W.H., Russel, L.T., "Stiffness Matrix Band-Width," Stress Analysis by the Finite Element Method for Practicing Engineers, 1st ed., Vol. 1, D.C. Heath and Company, Lexington, Massachusetts, 1975, pp. 16-20.

[^0]:    INERTIA I(3)
    0. 1200D-04

[^1]:    $\ll 4$
    耑宸
    
    

